Bài 3.44 trang 132 SBT hình học 12

2024-09-14 19:37:29

Đề bài

Cho mặt phẳng \((\alpha )\) : 2x + y  +z – 1 = 0  và đường thẳng d: \(\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{{z + 2}}{{ - 3}}\)

Gọi M là giao điểm của d và \((\alpha )\), hãy viết phương trình của đường thẳng \(\Delta \)  đi qua M vuông góc với d và nằm trong \((\alpha )\).

Phương pháp giải - Xem chi tiết

- Tìm giao điểm của \(d\) và \(\left( \alpha  \right)\).

- Đường thẳng \(\Delta \) vuông góc với \(d\) và nằm trong \(\left( \alpha  \right)\) \( \Rightarrow \overrightarrow {{u_\Delta }}  = \left[ {\overrightarrow {{u_d}} ,\overrightarrow {{n_{\left( \alpha  \right)}}} } \right]\)

Lời giải chi tiết

Phương trình tham số của đường thẳng d: \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = t}\\{z =  - 2 - 3t}\end{array}} \right.\)

Xét phương trình \(2(1 + 2t) + t + ( - 2 – 3t) – 1 = 0\) \( \Leftrightarrow 2t - 1 = 0\) \( \Leftrightarrow t = \dfrac{1}{2}\)

Vậy đưởng thẳng d cắt mặt phẳng \((\alpha )\) tại điểm \(M\left( {2;\dfrac{1}{2}; - \dfrac{7}{2}} \right)\).

Ta có vecto pháp tuyến của mặt phẳng \((\alpha )\) và vecto chỉ phương của đường thẳng d lần lượt là  \(\overrightarrow {{n_\alpha }}  = (2;1;1)\) và \(\overrightarrow {{u_d}}  = (2;1; - 3)\).

Gọi \(\overrightarrow {{u_\Delta }} \) là vecto pháp tuyến của \(\Delta \), ta có \(\overrightarrow {{u_\Delta }}  \bot \overrightarrow {{n_\alpha }} \) và \(\overrightarrow {{u_\Delta }}  \bot \overrightarrow {{u_d}} \).

Ta có: \(\left[ {\overrightarrow {{n_\alpha }} ,\overrightarrow {{u_d}} } \right] = \left( { - 4;8;0} \right)\) nên chọn \(\overrightarrow {{u_\Delta }}  = \left( {1; - 2;0} \right)\)

Vậy phương trình tham số của \(\Delta \) là  \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + t}\\{y = \dfrac{1}{2} - 2t}\\{z =  - \dfrac{7}{2}}\end{array}} \right.\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"