Bài 3.41 trang 132 SBT hình học 12

2024-09-14 19:37:32

Cho điểm M(1; -1; 2) và mặt phẳng \((\alpha )\): 2x – y + 2z + 12 = 0

LG a

Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng \((\alpha )\);

Phương pháp giải:

- Viết phương trình tham số của đường thẳng \(\Delta \) đi qua \(M\) và vuông góc \(\left( \alpha  \right)\).

- Tìm giao điểm của \(\Delta \) và \(\left( \alpha  \right)\).

Lời giải chi tiết:

Phương trình tham số của đường thẳng \(\Delta \) đi qua điểm M(1; -1; 2) và vuông góc với mặt phẳng \((\alpha )\) : 2x – y + 2z + 12 = 0 là: \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y =  - 1 - t}\\{z = 2 + 2t}\end{array}} \right.\)

Xét điểm H(1 + 2t; -1 – t ; 2 + 2t) \( \in \Delta \)

Ta có \(H \in (\alpha )\)\( \Leftrightarrow 2(1 + 2t) + (1 + t)\)\( + 2(2 + 2t) + 12 = 0\)  \( \Leftrightarrow t = \dfrac{{ - 19}}{9}\)

Vậy ta được \(H\left( {\dfrac{{ - 29}}{9};\dfrac{{10}}{9};\dfrac{{ - 20}}{9}} \right)\)


LG b

Tìm tọa độ điểm M’ đối xứng với M qua mặt phẳng \((\alpha )\).

Phương pháp giải:

\(M'\) đối xứng với \(M\) qua \(\left( \alpha  \right)\) \( \Leftrightarrow H\) là trung điểm của \(MM'\).

Lời giải chi tiết:

H là trung điểm của MM’, suy ra  \({x_{M'}} = 2{x_H} - {x_M} = \dfrac{{ - 58}}{9} - 1 = \dfrac{{ - 67}}{9}\)

\({y_{M'}} = 2{y_H} - {y_M} = \dfrac{{20}}{9} + 1 = \dfrac{{29}}{9}\)

\({z_{M'}} = 2{z_H} - {z_M} = \dfrac{{ - 40}}{9} - 2 = \dfrac{{ - 58}}{9}\)

Vậy ta được \(M'\left( {\dfrac{{ - 67}}{9};\dfrac{{29}}{9};\dfrac{{ - 58}}{9}} \right)\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"