Bài 3.40 trang 131 SBT hình học 12

2024-09-14 19:37:32

Đề bài

Cho điểm M(2; -1; 1) và đường thẳng \(\Delta :\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{z}{2}\)

a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên đường thẳng \(\Delta \);

b) Tìm tọa độ điểm M’ đối xứng với M qua đường thẳng \(\Delta \).

Phương pháp giải - Xem chi tiết

a) Tham số hóa tọa độ hình chiếu của M trên \(\Delta \)

Lập phương trình tìm tham số, sử dụng điều kiện \(\overrightarrow {MH}  \bot \overrightarrow {{u_\Delta }} \)

b) \(M'\) đối xứng với \(M\) qua \(\Delta \) nếu \(H\) là trung điểm của \(MM'\).

Lời giải chi tiết

a) Phương trình tham số của \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y =  - 1 - t}\\{z = 2t}\end{array}} \right.\)

Xét điểm  \(H(1 + 2t; - 1 - t;2t) \in \Delta \)

Ta có \(\overrightarrow {MH}  = (2t - 1; - t;2t - 1)\), \(\overrightarrow {{u_\Delta }}  = (2; - 1;2)\)

H là hình chiếu vuông góc của M trên \(\Delta  \Leftrightarrow \overrightarrow {MH} .\overrightarrow {{u_\Delta }}  = 0\)

\( \Leftrightarrow 2(2t - 1) + t + 2(2t - 1) = 0\)\( \Leftrightarrow t = \dfrac{4}{9}\)

Ta suy ra tọa độ điểm  \(H\left( {\dfrac{{17}}{9};\dfrac{{ - 13}}{9};\dfrac{8}{9}} \right)\)

Cách khác:

Gọi \(\left( \alpha  \right)\) là mặt phẳng đi qua \(M\) và vuông góc với \(\Delta \).

Khi đó \(\overrightarrow {{n_\alpha }}  = \overrightarrow {{u_\Delta }}  = \left( {2; - 1;2} \right)\) là VTPT của \(\left( \alpha  \right)\)

Mà \(\left( \alpha  \right)\) đi qua \(M\left( {2; - 1;1} \right)\) nên:

\(\left( \alpha  \right):2\left( {x - 2} \right) - \left( {y + 1} \right) + 2\left( {z - 1} \right) = 0\) hay \(2x - y + 2z - 7 = 0\)

\(H = \Delta  \cap \left( \alpha  \right)\) nên tọa độ điểm \(H\) thỏa mãn hệ phương trình:

\(\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 1 - t\\z = 2t\\2x - y + 2z - 7 = 0\end{array} \right.\) \( \Rightarrow 2\left( {1 + 2t} \right) - \left( { - 1 - t} \right) + 2.2t - 7 = 0\)

\( \Leftrightarrow 9t - 4 = 0 \Leftrightarrow t = \dfrac{4}{9}\)

\( \Rightarrow H\left( {\dfrac{{17}}{9}; - \dfrac{{13}}{9};\dfrac{8}{9}} \right)\)

b) H là trung điểm của MM’, suy ra \({x_{M'}} + {x_M} = 2{x_H}\)

Suy ra \({x_{M'}} = 2{x_H} - {x_M} = \dfrac{{34}}{9} - 2 = \dfrac{{16}}{9}\)

Tương tự, ta được \({y_{M'}} = 2{y_H} - {y_M} = \dfrac{{ - 26}}{9} + 1 = \dfrac{{ - 17}}{9};\)\({z_{M'}} = 2{z_H} - {z_M} = \dfrac{{16}}{9} - 1 = \dfrac{7}{9}\)

Vậy \(M'\left( {\dfrac{{16}}{9};\dfrac{{ - 17}}{9};\dfrac{7}{9}} \right)\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"