Bài 3.34 trang 130 SBT hình học 12

2024-09-14 19:37:34

Đề bài

Tìm a để hai đường thẳng sau đây song song: \(d:\left\{ {\begin{array}{*{20}{c}}{x = 5 + t}\\{y = at}\\{z = 2 - t}\end{array}} \right.\) và \(d':\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t'}\\{y = a + 4t'}\\{z = 2 - 2t'}\end{array}} \right.\)

Phương pháp giải - Xem chi tiết

- Sử dụng điều kiện cần, hai đường thẳng song song thì \(\overrightarrow {{u_d}} //\overrightarrow {{u_{d'}}} \) tìm \(a\).

- Thay \(a\) và kiểm tra lại điều kiện \(d//d'\).

Lời giải chi tiết

Ta có \(\overrightarrow {{u_d}}  = (1;a; - 1)\) và \(\overrightarrow {{u_{d'}}}  = (2;4; - 2)\)

\(d//d' \Rightarrow \dfrac{1}{2} = \dfrac{a}{4} = \dfrac{{ - 1}}{{ - 2}}\)\( \Rightarrow a = 2\)

Khi đó \(M{'_0}(1;2;2)\) thuộc d’ và M’0 không thuộc d.

Vậy \(d//d'\) nếu \(a = 2\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"