Bài 3.51 trang 133 SBT hình học 12

2024-09-14 19:37:41

Đề bài

Lập phương trình mặt phẳng (P) chứa đường thẳng d: \(\left\{ {\matrix{{x = - 2 - t} \cr {y = 1 + 4t} \cr {z = 1 - t} \cr} } \right.\) và song song với d1: \({{x - 1} \over 1} = {{y - 1} \over 4} = {{z - 1} \over { - 3}}\)

Phương pháp giải - Xem chi tiết

Mặt phẳng  chứa đường thẳng  và song song với  nên nhận  làm VTCP.

Lời giải chi tiết

Đường thẳng d đi qua \(M(-2; 1;1)\) có vecto chỉ phương là

Đường thẳng d1 đi qua \(N(1; 1; 1)\) có vecto chỉ phương là

Ta có:   nên , suy ra d và d1 chéo nhau.

Do đó (P) là mặt phẳng đi qua M(-2; 1; 1) có vecto pháp tuyến bằng

Phương trình của (P) là: \(–8(x + 2) – 4(y – 1) – 8(z – 1) = 0\)  hay \(2x  +y + 2z + 1 = 0\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"