Bài 3.48 trang 132 SBT hình học 12

2024-09-14 19:37:41

Đề bài

Lập phương trình mặt phẳng (P) đi qua ba điểm A(-1; -3; 2), B(-2; 1; 1) và C(0; 1; -1).

Phương pháp giải - Xem chi tiết

Mặt phẳng \(\left( P \right)\) đi qua ba điểm \(A,B,C\) thì \(\overrightarrow {{n_P}} \) cùng phương với \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\)

Lời giải chi tiết

Ta có: \(\overrightarrow {AB} ( - 1;4; - 1);\overrightarrow {AC} (1;4; - 3)\)

\( \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\)\( = \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}4\\4\end{array}}&{\begin{array}{*{20}{c}}{ - 1}\\{ - 3}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{ - 1}\\{ - 3}\end{array}}&{\begin{array}{*{20}{c}}{ - 1}\\1\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{ - 1}\\1\end{array}}&{\begin{array}{*{20}{c}}4\\4\end{array}}\end{array}} \right|} \right)\) \( = \left( { - 8; - 4; - 8} \right)\)

Suy ra có thể chọn \(\overrightarrow {{n_P}}  = (2;1;2)\)

Phương trình của (P) là: \( 2x + (y – 1) + 2(z  +1) = 0\)  hay \(2x + y + 2z + 1 = 0\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"