Bài 3.64 trang 134 SBT hình học 12

2024-09-14 19:37:43

Đề bài

Trong không gian Oxyz, cho hai mặt phẳng \((\beta )\): \(x + 3ky – z + 2 = 0\) và \((\gamma )\) : \(kx – y + z + 1 = 0\). Tìm \(k\) để giao tuyến của \((\beta )\) và \((\gamma )\) vuông góc với mặt phẳng \((\alpha )\): x – y – 2z + 5 = 0.

Phương pháp giải - Xem chi tiết

- Tìm VTCP của đường thẳng giao tuyến \(\overrightarrow a  = \left[ {\overrightarrow {{n_\beta }} ,\overrightarrow {{n_\gamma }} } \right]\).

- Sử dụng điều kiện đường thẳng vuông góc với mặt phẳng thì \(\overrightarrow a \) cùng phương \(\overrightarrow {{n_\alpha }} \).

Lời giải chi tiết

Ta có  \(\overrightarrow {{n_\beta }}  = (1;3k; - 1)\) và \(\overrightarrow {{n_\gamma }}  = (k; - 1;1)\). Gọi \(d = (\beta ) \cap (\gamma )\)

Đường thẳng \(d\) vuông góc với giá của \(\overrightarrow {{n_\beta }} \) và \(\overrightarrow {{n_\gamma }} \) nên có vecto chỉ phương là:

\(\overrightarrow u  = \left[ {\overrightarrow {{n_\beta }} ,\overrightarrow {{n_\gamma }} } \right]\)\( = \left( {3k - 1; - k - 1; - 1 - 3{k^2}} \right)\)

Ta có: \(d \bot (\alpha )\)\( \Leftrightarrow \dfrac{{3k - 1}}{1} = \dfrac{{ - k - 1}}{{ - 1}} = \dfrac{{ - 1 - 3{k^2}}}{{ - 2}}\) \( \Leftrightarrow k = 1\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"