Bài 3.63 trang 134 SBT hình học 12

2024-09-14 19:37:43

Trong không gian Oxyz, cho ba điểm A(1; 0; 0), B(1; 1; 1), \(C\left( {\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}} \right)\)

LG a

Viết phương trình tổng quát của mặt phẳng \((\alpha )\) đi qua O và vuông góc với OC.

Phương pháp giải:

Sử dụng công thức viết phương trình mặt phẳng \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\).

Lời giải chi tiết:

Mặt phẳng \((\alpha )\) có vecto pháp tuyến là \(\overrightarrow {OC}  = \left( {\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}} \right)\) hay \(\overrightarrow n  = 3\overrightarrow {OC}  = (1;1;1)\)

Phương trình mặt phẳng \((\alpha )\) là \(x + y + z = 0\).


LG b

Viết phương trình mặt phẳng \((\beta )\) chứa AB và vuông góc với \((\alpha )\).

Phương pháp giải:

Mặt phẳng \((\beta )\) chứa AB và vuông góc với \((\alpha )\) nên nhận \(\left[ {\overrightarrow {AB} ,\overrightarrow {{n_\alpha }} } \right]\) làm VTPT.

Lời giải chi tiết:

Gọi \((\beta )\) là mặt phẳng chứa AB và vuông góc với mặt phẳng \((\alpha )\).

Hai vecto có giá song song hoặc nằm trên \((\beta )\) là: \(\overrightarrow {AB}  = (0;1;1)\) và \(\overrightarrow {{n_\alpha }}  = (1;1;1)\)

Suy ra \((\beta )\) có vecto pháp tuyến \(\overrightarrow {{n_\beta }}  = \left[ {\overrightarrow {{n_\alpha }} ,\overrightarrow {AB} } \right]  = (0;1; - 1)\)

Phương trình mặt phẳng \((\beta )\) là \( y – z = 0\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"