Bài 9 trang 170 SBT hình học 12

2024-09-14 19:37:50

Đề bài

Trong không gian Oxyz cho hình lập phương ABCD.A’B’C’D’ với A(0;0;0), B(1;0;0), D(0;1;0), A’(0;0;1)

a) Hãy tìm tọa độ các đỉnh còn lại.

b) Chứng minh A'C ⊥ (BC'D)

c) Tìm tọa độ của chân đường vuông góc chung của B'D' và BC'.

Lời giải chi tiết

a) Dễ thấy C(1; 1; 0), B'(1; 0; 1), D'(0; 1; 1), C'(1; 1; 1), D'(0; 1; 1).

b) Ta có: \(\overrightarrow {A'C}  = \left( {1;1; - 1} \right)\)

\(\overrightarrow {BC'}  = \left( {0;1;1} \right)\), \(\overrightarrow {BD}  = \overrightarrow {B'D'}  = \left( { - 1;1;0} \right)\)

Do đó \(\overrightarrow {A'C} .\overrightarrow {BC'}  = 0\) và \(\overrightarrow {A'C} .\overrightarrow {BD}  = 0\)

Từ đó suy ra \(A'C \bot BC',A'C \bot BD\) nên A'C ⊥ (BC'D).

c)

Gọi IJ là đường vuông góc chung của B'D' và BC'

\(\overrightarrow {{n_1}} \) là vectơ pháp tuyến của mặt phẳng (P) qua B'D' và song song với A’C

\(\overrightarrow {{n_2}} \) là vectơ pháp tuyến của mặt phẳng (Q) qua BC' và song song với A'C.

Khi đó \(\overrightarrow {{n_1}}  = \left[ {\overrightarrow {A'C} ,\overrightarrow {B'D'} } \right] = \left( {1;1;2} \right)\)

\(\overrightarrow {{n_2}}  = \left[ {\overrightarrow {A'C} ,\overrightarrow {BC'} } \right] = \left( {2; - 1;1} \right)\)

Phương trình của (P) là: (x - 1) + y + 2(z - 1) = 0 hay x + y + 2z - 3 = 0.

Phương trình của (Q) là: 2(x - 1) - y + z = 0 hay 2x - y + z - 2 = 0.

Phương trình của (B'D') là: \(\left\{ \begin{array}{l}x = 1 - t\\y = t\\z = 1\end{array} \right.\) .

Phương trình của (BC') là: \(\left\{ \begin{array}{l}x = 1\\y = t\\z = t\end{array} \right.\)

I là giao điểm của đường thẳng B'D' và (Q), để tìm tọa độ của I ta thế phương trình đường thẳng B'D' vào phương trình của (Q)

Ta có: 2(1 - t) - t + 1 - 2 = 0, hay t = 1/3.

Từ đó suy ra I(2/3; 1/3; 1)

Tương tự, ta tìm được J(1; 2/3; 1/3).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"