Đề bài
Chứng minh rằng: \(\sin x + \tan x > 2x\) với mọi \(x \in \left( {0;{\pi \over 2}} \right)\).
Phương pháp giải - Xem chi tiết
Chứng minh hàm số \(f\left( x \right) = \sin x + \tan x - 2x\) đồng biến trên nửa khoảng \(\left[ {0;{\pi \over 2}} \right)\).
Lời giải chi tiết
Xét hàm số \(f\left( x \right) = \sin x + \tan x - 2x\)
Ta có: f(x) liên tục trên nửa khoảng \(\left[ {0;{\pi \over 2}} \right)\) và có đạo hàm: \(f'\left( x \right) = \cos x + {1 \over {{{\cos }^2}x}}\, - 2\)
Vì \(x \in \left( {0;{\pi \over 2}} \right)\) nên \(0 < \cos x < 1 \Rightarrow \cos x > {\cos ^2}x\)
\( \Rightarrow \cos x + {1 \over {{{\cos }^2}x}} - 2 \) \(> {\cos ^2}x + {1 \over {{{\cos }^2}x}}\, - 2 \)
\( \ge 2\sqrt {{{\cos }^2}x.\frac{1}{{{{\cos }^2}x}}} - 2 = 2 - 2 = 0\)
Do đó \(f'\left( x \right) > 0\) với mọi \(x \in \left( {0;{\pi \over 2}} \right)\)
Suy ra hàm số \(f\) đồng biến trên \(\,\left[ {0;{\pi \over 2}} \right)\)
Khi đó ta có \(f\left( x \right) > f\left( 0 \right) = 0\) với mọi \(x \in \left( {0;{\pi \over 2}} \right)\)
\(\begin{array}{l}
\Rightarrow \sin x + \tan x - 2x > 0\\
\Leftrightarrow \sin x + \tan x > 2x
\end{array}\)
với mọi \(x \in \left( {0;{\pi \over 2}} \right)\).
[hoctot.me - Trợ lý học tập AI]