Bài 22 trang 23 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:38:27

Đề bài

Tìm giá trị của \(m\) để hàm số \(f\left( x \right) = {{{x^2} + mx - 1} \over {x - 1}}\) có cực đại và cực tiểu.

Phương pháp giải - Xem chi tiết

B1: Tìm tập xác định D và tính f'(x)

B2: Nhận xét: Hàm f có cực đại và cực tiểu \(\Leftrightarrow f'(x)=0 \) có 2 nghiệm phân biệt trên D

B3: Biện luận tìm m và KL

Lời giải chi tiết

TXĐ: \(D = {\mathbb{R}}\backslash \left\{ 1 \right\}\)

\(f'\left( x \right) = {{({x^2} + mx - 1)'.(x-1) -({x^2} + mx - 1).(x-1)'}\over {(x-1)^2}} ={{\left( {2x + m} \right)\left( {x - 1} \right) - \left( {{x^2} + mx - 1} \right)} \over {{{\left( {x - 1} \right)}^2}}} \) \(= {{{x^2} - 2x + 1 - m} \over {{{\left( {x - 1} \right)}^2}}}\)

\(f'\left( x \right) = 0 \) \(\Leftrightarrow g(x)= {x^2} - 2x + 1 - m = 0 ( x\ne 1) (1)\)

Hàm số \(f\) có cực đại và cực tiểu khi và chỉ khi phương trình (1) có hai nghiệm phân biệt khác \(1\), tức là

\(\left\{ \matrix{
\Delta '_{ (1)} > 0 \hfill \cr 
g(1) \ne 0 \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
\Delta ' = 1-(1-m) > 0 \hfill \cr 
{1^2} - 2.1 + 1 - m \ne 0 \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}
m > 0\\
m \ne 0
\end{array} \right.\)

\( \Leftrightarrow m > 0\) .

Vậy \(m>0\) thì hàm số \(f\left( x \right)\) có cực đại và cực tiểu.

 

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"