Bài 17 trang 22 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:38:32

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

LG a

\(f\left( x \right) = {x^2} + 2x - 5\) trên đoạn \(\left[ { - 2;3} \right]\);

Lời giải chi tiết:

\(D = \left[ { - 2;3} \right]\)

\(f'\left( x \right) = 2x + 2\)

\(f'\left( x \right) = 0 \Leftrightarrow  x=- 1 \in \left[ { - 2;3} \right]\)

Ta có: \(f\left( { - 2} \right) =  - 5;f\left( { - 1} \right) =  - 6;\) \(f\left( 3 \right) = 10\).

Vậy: \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ { - 2;3} \right]}  =  - 6;\mathop {\max \,f\left( x \right) = 10}\limits_{x \in \left[ { - 2;3} \right]} \).

Cách khác:

Hàm số f(x)= x2 + 2x – 5

Tập xác định D = R.

Đạo hàm y’= 2x +2 = 0 x = - 1

Bảng biến thiên:

Vậy: \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ { - 2;3} \right]}  =  - 6;\mathop {\max \,f\left( x \right) = 10}\limits_{x \in \left[ { - 2;3} \right]} \).


LG b

\(f\left( x \right) = {{{x^3}} \over 3} + 2{x^2} + 3x - 4\) trên đoạn \(\left[ { - 4;0} \right]\);

Lời giải chi tiết:

\(D = \left[ { - 4;0} \right]\)

\(f'\left( x \right) = {x^2} + 4x + 3\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \matrix{
x = - 1 \in \left[ { - 4;0} \right] \hfill \cr 
x = - 3 \in \left[ { - 4;0} \right] \hfill \cr} \right.\)

Ta có: \(f\left( { - 4} \right) =  - {{16} \over 3};f\left( { - 1} \right) =  - {{16} \over 3};\) \(f\left( { - 3} \right) =  - 4;f\left( 0 \right) =  - 4\)

Vậy \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ { - 4;0} \right]}  =  - {{16} \over 3};\) \(\mathop {\max \,f\left( x \right)}\limits_{x \in \left[ { - 4;0} \right]}  =  - 4\).


LG c

\(f\left( x \right) = x + {1 \over x}\) trên đoạn \(\left( {0; + \infty } \right)\);

Lời giải chi tiết:

\(D = \left( {0; + \infty } \right)\)

\(f'\left( x \right) = 1 - {1 \over {{x^2}}} = {{{x^2} - 1} \over {{x^2}}}\) với mọi \(x \ne 0\)

\(f'\left( x \right) = 0 \Leftrightarrow x =  \pm 1\)

\(x=1\in \left( {0; + \infty } \right.)\)

\(x=-1\not\in \left( {0; + \infty } \right.)\)

Vậy \(\mathop {\min \,\,f\left( x \right) = f\left( 1 \right)}\limits_{x \in \left( {0; + \infty } \right)}  = 2\).

Hàm số không đạt giá trị lớn nhất trên khoảng \(\left( {0; + \infty } \right)\).


LG d

\(f\left( x \right) =  - {x^2} + 2x + 4\) trên đoạn \(\left[ {2;4} \right]\);

Lời giải chi tiết:

\(D = \left[ {2;4} \right]\)

\(f'\left( x \right) =  - 2x + 2\)

\(f'\left( x \right) = 0 \Leftrightarrow x = 1 \notin \left[ {2;4} \right]\)

Ta có: \(f\left( 2 \right) = 4;f\left( 4 \right) =  - 4\)

Vậy \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ {2;4} \right]}  =  - 4;\) \(\mathop {\max f\left( x \right)}\limits_{x \in \left[ {2;4} \right]}  = 4\).


LG e

\(f\left( x \right) = {{2{x^2} + 5x + 4} \over {x + 2}}\) trên đoạn \(\left[ {0;1} \right]\);

Lời giải chi tiết:

\(D = \left[ {0;1} \right]\)

\(f'\left( x \right) = {{2{x^2} + 8x + 6} \over {{{\left( {x + 2} \right)}^2}}}\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \matrix{
x = - 1 \notin \left[ {0;1} \right] \hfill \cr 
x = - 3 \notin \left[ {0;1} \right] \hfill \cr} \right.\)

Ta có: \(f\left( 0 \right) = 2;f\left( 1 \right) = {{11} \over 3}\)

Vậy \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ {0;1} \right]}  = 2;\) \(\mathop {\max f\left( x \right)}\limits_{x \in \left[ {0;1} \right]}  = {{11} \over 3}\)

Cách khác:

Bảng biến thiên:

Vậy \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ {0;1} \right]}  = 2;\) \(\mathop {\max f\left( x \right)}\limits_{x \in \left[ {0;1} \right]}  = {{11} \over 3}\)


LG f

\(f\left( x \right) = x - {1 \over x}\) trên đoạn \(\left( {0;2} \right]\);

Lời giải chi tiết:

\(D = \left( {0;2} \right]\)

\(f'\left( x \right) = 1 + {1 \over {{x^2}}} > 0\) với mọi \(x \in \left( {0;2} \right]\)

\(f\left( 2 \right) = {3 \over 2}\)

Vậy \(\mathop {\,\max f\left( x \right)}\limits_{x \in \left[ {0;2} \right]}  = {3 \over 2}\) .

Hàm số không đạt giá trị nhỏ nhất trên \(\left( {0;2} \right]\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"