Bài 36 trang 35 SGK giải tích 12 nâng cao

2024-09-14 19:38:35

Tìm các tiệm cận của đồ thị hàm số sau:

LG a

\(\,y = \sqrt {{x^2} - 1} \,\,\);

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash ( - \infty ;1{\rm{]}} \cup {\rm{[}}1; + \infty )\)
* Tiệm cận xiên khi \(x \to  + \infty \)
Ta có: \(a = \mathop {\lim }\limits_{x \to  + \infty } {{\sqrt {{x^2} - 1} } \over x} = \mathop {\lim }\limits_{x \to  + \infty } {{x\sqrt {1 - {1 \over {{x^2}}}} } \over x} \) \(= \mathop {\lim }\limits_{x \to  + \infty } \sqrt {1 - {1 \over {{x^2}}}}  = 1\)
\(b = \mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} - 1}  - x} \right) \) \( = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} - 1 - {x^2}}}{{\sqrt {{x^2} - 1}  + x}}\) \(= \mathop {\lim }\limits_{x \to  + \infty } {{ - 1} \over {\sqrt {{x^2} - 1}  + x}} = 0\)
Vậy đường thẳng \(y = x\) là tiệm cận xiên của đồ thị khi \(x \to  + \infty \).
* Tiệm cận xiên khi \(x \to  - \infty \)
\(a = \mathop {\lim }\limits_{x \to  - \infty } {{\sqrt {{x^2} - 1} } \over x}  = \mathop {\lim }\limits_{x \to  - \infty } \frac{{\left| x \right|\sqrt {1 - \frac{1}{{{x^2}}}} }}{{\sqrt {{x^2} - 1}  + x}}\) \(= \mathop {\lim }\limits_{x \to  - \infty } {{ - x\sqrt {1 - {1 \over {{x^2}}}} } \over x} =  - \mathop {\lim }\limits_{x \to  - \infty } \sqrt {1 - {1 \over {{x^2}}}} \) \( =  - 1\)
\(b = \mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {{x^2} - 1}  + x} \right) \) \( = \mathop {\lim }\limits_{x \to  - \infty } \frac{{{x^2} - 1 - {x^2}}}{{\sqrt {{x^2} - 1}  - x}}\) \(= \mathop {\lim }\limits_{x \to  - \infty } {{ - 1} \over {\sqrt {{x^2} - 1}  - x}} = 0\)
Vậy đường thẳng \(y = -x\) là tiệm cận xiên của đồ thị (khi \(x \to  - \infty \)).


LG b

\(y = 2x + \sqrt {{x^2} - 1} \)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash ( - \infty ;1{\rm{]}} \cup {\rm{[}}1; + \infty )\)
* Tiệm cận xiên khi \(x \to  + \infty \)
Ta có: \(a = \mathop {\lim }\limits_{x \to  + \infty } {y \over x} = \mathop {\lim }\limits_{x \to  + \infty } \left( {2 + {{\sqrt {{x^2} + 1} } \over x}} \right) \) \(= \mathop {\lim }\limits_{x \to  + \infty } \left( {2 + \sqrt {1 - {1 \over {{x^2}}}} } \right) = 3\)
\(b = \mathop {\lim }\limits_{x \to  + \infty } \left( {y - 3x} \right) \) \( = \mathop {\lim }\limits_{x \to  + \infty } \left[ {2x + \sqrt {{x^2} - 1}  - 3x} \right]\) \(= \mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} - 1}  - x} \right) \) \(= \mathop {\lim }\limits_{x \to  + \infty } {{ - 1} \over {\sqrt {{x^2} - 1}  + x}} = 0\)
Vậy đường thẳng \(y = 3x\) là tiệm cận xiên của đồ thị (khi \(x \to  + \infty \)).
* Tiệm cận xiên khi \(x \to  - \infty \)
\(a = \mathop {\lim }\limits_{x \to  - \infty } {y \over x} = \mathop {\lim }\limits_{x \to  - \infty } \left( {2 + {{\sqrt {{x^2} + 1} } \over x}} \right)\) \( = \mathop {\lim }\limits_{x \to  - \infty } \left( {2 - \sqrt {1 - {1 \over {{x^2}}}} } \right) = 1\)
\(b = \mathop {\lim }\limits_{x \to  - \infty } \left( {y - x} \right) \) \( = \mathop {\lim }\limits_{x \to  - \infty } \left[ {2x + \sqrt {{x^2} - 1}  - x} \right]\)

\(= \mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {{x^2} - 1}  + x} \right) \) \(= \mathop {\lim }\limits_{x \to  - \infty } {{ - 1} \over {\sqrt {{x^2} - 1}  - x}} = 0\)
Vậy đường thẳng \(y = x\) là tiệm cận xiên của đồ thị (khi \(x \to  - \infty \))


LG c

\(y = x + \sqrt {{x^2} + 1} \)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\)
* Tiệm cận xiên khi \(x \to  + \infty \)

\(\eqalign{
& a = \mathop {\lim }\limits_{x \to + \infty } {y \over x} \cr&= \mathop {\lim }\limits_{x \to + \infty } \left( {1 + {{\sqrt {{x^2} + 1} } \over x}} \right) \cr&= \mathop {\lim }\limits_{x \to + \infty } \left( {1 + \sqrt {1 + {1 \over {{x^2}}}} } \right) = 2 \cr 
& b = \mathop {\lim }\limits_{x \to + \infty } \left( {y - 2x} \right) \cr&= \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x} \right) \cr&= \mathop {\lim }\limits_{x \to + \infty } {1 \over {\sqrt {{x^2} + 1} + x}} = 0 \cr} \)

Đường thẳng \(y = 2x\) là tiệm cận xiên (khi \(x \to  + \infty \))
* Tiệm cận khi \(x \to  - \infty \)
\(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {x + \sqrt {{x^2} - 1} } \right) \) \(= \mathop {\lim }\limits_{x \to  - \infty } {1 \over {x - \sqrt {{x^2} - 1} }} = 0\)

Đường thẳng \(y = 0\) là tiệm cận ngang (khi \(x \to  - \infty \))


LG d

\(y = \sqrt {{x^2} + x + 1} \).

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\)
* \(a = \mathop {\lim }\limits_{x \to  + \infty } {y \over x} \) \( = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + x + 1} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\frac{{{x^2} + x + 1}}{{{x^2}}}} \) \(= \mathop {\lim }\limits_{x \to  + \infty } \sqrt {1 + {1 \over x} + {1 \over {{x^2}}}}  = 1\)

\(\eqalign{
& b = \mathop {\lim }\limits_{x \to + \infty } \left( {y - x} \right) \cr&= \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 1} - x} \right) \cr 
& = \mathop {\lim }\limits_{x \to + \infty } {{x + 1} \over {\sqrt {{x^2} + x + 1} + x}} \cr&= \mathop {\lim }\limits_{x \to + \infty } {{1 + {1 \over x}} \over {\sqrt {1 + {1 \over x} + {1 \over {{x^2}}}} }+1} = {1 \over 2} \cr} \)

Đường thẳng \(y = x + {1 \over 2}\) là tiệm cận xiên (khi \(x \to  + \infty \))
* \(a = \mathop {\lim }\limits_{x \to  - \infty } {y \over x} = \mathop {\lim }\limits_{x \to  - \infty } {{\sqrt {{x^2} + x + 1} } \over x} \) \(= \mathop {\lim }\limits_{x \to  - \infty } {{ - x\sqrt {1 + {1 \over x} + {1 \over {{x^2}}}} } \over x} \) \(= \mathop {\lim }\limits_{x \to  - \infty } -\sqrt {1 + {1 \over x} + {1 \over {{x^2}}}}  =  - 1\)
\(b = \mathop {\lim }\limits_{x \to  - \infty } \left( {y + x} \right) \) \(= \mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {{x^2} + x + 1}  + x} \right) \) \(= \mathop {\lim }\limits_{x \to  - \infty } {{x + 1} \over {\sqrt {{x^2} + x + 1}  - x}} \) \(= \mathop {\lim }\limits_{x \to  - \infty } {{1 + {1 \over x}} \over { - \sqrt {1 + {1 \over x} + {1 \over {{x^2}}}} }-1} =  - {1 \over 2}\)

Đường thẳng \(y =  - x - {1 \over 2}\) là tiệm cận xiên (khi \(x \to  - \infty \))

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"