Bài 41 trang 44 SGK giải tích 12 nâng cao

2024-09-14 19:38:50

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số: \(y =  - {x^3} + 3{x^2} - 1\).

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } y = - \infty ;\,\mathop {\lim }\limits_{x \to - \infty } y = + \infty \cr 
& y' = - 3{x^2} + 6x = - 3x\left( {x - 2} \right);\cr&y' = 0 \Leftrightarrow \left[ \matrix{
x = 0;\,y\left( 0 \right) = - 1 \hfill \cr 
x = 2;\,y\left( 2 \right) = 3 \hfill \cr} \right. \cr} \)

Bảng biến thiên:

Hàm đồng biến trên khoảng \((0;2)\), nghịch biến trên mỗi khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\).

Hàm số đạt cực tiểu tại điểm \(x = 0\), giá trị cực tiểu \(y(0) = -1\). Hàm số đạt cực đại tại điểm \(x = 2\), giá trị cực đại \(y(2) = 3\).

Đồ thị: \(y'' =  - 6x + 6\)

\(y'' = 0 \Leftrightarrow x = 1;\,y\left( 1 \right) = 1\)

Xét dấu y”:

\(I(1;1)\) là điểm uốn của đồ thị

Điểm đặc biệt:

\(x = 0 \Rightarrow y =  - 1\)

\(x =  - 1 \Rightarrow y = 3\)


LG b

Tùy theo các giá trị của \(m\), hãy biện luận số nghiệm của phương trình: \( - {x^3} + 3{x^2} - 1 = m\)

Lời giải chi tiết:

Số nghiệm của phương trình chính là số giao điểm của đồ thị \((C)\) hàm số \(y =  - {x^3} + 3{x^2} - 1\) với đường thẳng \(y = m\) cùng phương với trục \(Ox\).

Dựa vào đồ thị ở câu a) ta có:

- Nếu m > 3: Phương trình (*) có 1 nghiệm

- Nếu m = 3: Phương trình (*) có 2 nghiệm.

- Nếu -1 < m < 3 : Phương trình (*) có 3 nghiệm

- Nếu m = -1: Phương trình (*) có 2 nghiệm.

- Nếu m < -1 phương trình (*) có 1 nghiệm.

Vậy,

- Nếu \(m < -1\) hoặc \(m > 3\) thì phương trình có \(1\) nghiệm;

- Nếu \(m = -1\) hoặc \(m = 3\) thì phương trình có \(2\) nghiệm;

- Nếu \(-1 < m < 3\) thì phương trình có \(3\) nghiệm.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"