Bài 51 trang 49 SGK giải tích 12 nâng cao

2024-09-14 19:38:59

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số: \(y = {{2{x^2} + 5x + 4} \over {x + 2}}\)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash \left\{ { - 2} \right\}\)
\(\mathop {\lim }\limits_{x \to  - {2^ + }} y =  + \infty ;\,\,\mathop {\lim }\limits_{x \to  - {2^ - }} y =  - \infty \) nên \(x = -2\) là tiệm cận đứng.

Ta có: \(y = 2x + 1 + {2 \over {x + 2}}\)

\(\mathop {\lim }\limits_{x \to  \pm \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to  \pm \infty } {2 \over {x + 2}} = 0\) nên \(y = 2x + 1\) là tiệm cận xiên

\(\eqalign{
& y' = 2 - {2 \over {{{\left( {x + 2} \right)}^2}}} \cr&= {{2\left[ {{{\left( {x + 2} \right)}^2} - 1} \right]} \over {{{\left( {x + 2} \right)}^2}}} \cr&= {{2\left( {x + 1} \right)\left( {x + 3} \right)} \over {{{\left( {x + 2} \right)}^2}}} \cr 
& y' = 0 \Leftrightarrow \left[ \matrix{
x = - 1;\,\,y\left( { - 1} \right) = 1 \hfill \cr 
x = - 3;\,\,y\left( { - 3} \right) = - 7 \hfill \cr} \right. \cr} \)

Bảng biến thiên:

Hàm số đồng biến trên khoảng (-∞; -3) và (-1; +∞)

Hàm số nghịch biến trên (-3; -2)và (-2; -1)

y=y(-3)=-7

yCT=y(-1)=1

Đồ thị:

+) Giao với Oy là A(0; 2)

+) Đi qua B(-1;1)


LG b

Chứng minh rằng giao điểm \(I\) của đường tiệm cận của đồ thị là tâm đối xứng của đồ thị.

Lời giải chi tiết:

Giao điểm hai đường tiệm cận của đồ thị là nghiệm của hệ.

\(\left\{ \matrix{
x = - 2 \hfill \cr 
y = 2x + 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - 2 \hfill \cr 
y = - 3 \hfill \cr} \right.\)

Vậy \(I\left( { - 2; - 3} \right)\)
Công thức đổi trục tọa độ theo véc tơ \(\overrightarrow {OI} \) là

\(\left\{ \matrix{
x = X - 2 \hfill \cr 
y = Y - 3 \hfill \cr} \right.\)

Ta có:

\(\eqalign{
& Y - 3 = 2(X - 2) + 1 + {2 \over {X - 2 + 2}} \cr 
& \Leftrightarrow Y - 3 = 2X - 4 + 1 + {2 \over X} \cr 
& \Leftrightarrow Y = 2X + {2 \over X} \cr} \)

Hàm số là hàm số lẻ nên đồ thị của hàm số nhận gốc \(I\) làm tâm đối xứng.


LG c

Tùy theo các giá trị của \(m\), hãy biện luận số nghiệm của phương trình:

\({{2{x^2} + 5x + 4} \over {x + 2}} + m = 0\)

Lời giải chi tiết:

Ta có: \({{2{x^2} + 5x + 4} \over {x + 2}} + m = 0 \Leftrightarrow {{2{x^2} + 5x + 4} \over {x + 2}} =  - m\)
Số nghiệm của phương trình chính là số giao điểm của đồ thị \((C)\) hàm số và đường thẳng \(y = -m\).
Dựa vào đồ thị ta có:
+) \(- m< -7\) hoặc \(–m>1\) \( \Leftrightarrow m > 7\) hoặc \(m< -1\) : phương trình có \(2\) nghiệm;
+) \(-m=-7\) hoặc \(–m = 1  \Leftrightarrow  m = 7\) hoặc \(m = -1\): phương trình có \(1\) nghiệm;
+) \(- 7

Kết luận:

+) m < -1 hoặc m > 7 thì phương trình có 2 nghiệm phân biệt.

+) m=-1 hoặc m=7 thì phương trình có 1 nghiệm.

+) \( -1 < m < 7\) thì phương trình vô nghiệm.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"