Bài 50 trang 49 SGK giải tích 12 nâng cao

2024-09-14 19:39:00

Khảo sát sự biến thiên và vẽ đồ thị hàm số sau:

LG a

\(y = {{x + 1} \over {x - 1}}\)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash \left\{ 1 \right\}\)
 \(\mathop {\lim }\limits_{x \to {1^ + }} y =  + \infty ;\,\,\mathop {\lim }\limits_{x \to {1^ - }} y =  - \infty \) nên \(x = 1\) là tiệm cận đứng.

Vì \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  - \infty } y = 1\) nên \(y = 1\) là tiệm cận ngang.

\(y = {{1.(-1)-1.1} \over {{{\left( {x - 1} \right)}^2}}} = {{ - 2} \over {{{\left( {x - 1} \right)}^2}}} < 0\) với mọi \(x \ne 1\)

Hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\)

Hàm số không có cực trị.
Đồ thị hàm số cắt trục tung tại điểm \((0;-1)\) cắt trục hoành tại điểm \((-1;0)\)
Đồ thị nhận giao điểm hai tiệm cận \(I(1;1)\) làm tâm đối xứng.


LG b

\(y = {{2x + 1} \over {1 - 3x}}\)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash \left\{ {{1 \over 3}} \right\}\)
\(\mathop {\lim }\limits_{x \to {{\left( {{1 \over 3}} \right)}^ + }} y =  - \infty ;\,\mathop {\lim }\limits_{x \to {{\left( {{1 \over 3}} \right)}^ - }} y =  + \infty \) nên \(x = {1 \over 3}\) là tiệm cận đứng.

Vì \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  - \infty }y  =  - {2 \over 3}\) nên \(y =  - {2 \over 3}\) là tiệm cận ngang.

\(y = {{2.1-(-3).1} \over {{{\left( {1 - 3x} \right)}^2}}} = {5 \over {{{\left( {1 - 3x} \right)}^2}}} > 0\) với mọi \(x \ne {1 \over 3}\)

   

Hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ;{1 \over 3}} \right)\) và \(\left( {{1 \over 3}; + \infty } \right)\)

Hàm số không có cực trị.
Đồ thị cắt trục tung tại điểm \((0;1)\) và cắt trục hoành tại điểm \(\left( { - {1 \over 2};0} \right)\).
Đồ thị nhận giao điểm hai tiệm cận \(I\left( {{1 \over 3};{-2 \over 3}} \right)\) làm tâm đối xứng.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"