Bài 49 trang 49 SGK giải tích 12 nâng cao

2024-09-14 19:39:02

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số : \(y = {{x - 2} \over {2x + 1}}\)

Lời giải chi tiết:

TXĐ: \(R\backslash \left\{ { - {1 \over 2}} \right\}\)
Ta có: \(\mathop {\lim }\limits_{x \to {{\left( { - {1 \over 2}} \right)}^ + }} y =  - \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - {1 \over 2}} \right)}^ - }} y =  + \infty \) nên đường thẳng \(x =  - {1 \over 2}\) là tiệm cận đứng của đồ thị.
Vì \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  - \infty } y = {1 \over 2}\) nên đường thẳng \(y = {1 \over 2}\) là tiệm cận ngang của đồ thị.

\(y' = {{1.1-2.(-2)} \over {{{\left( {2x + 1} \right)}^2}}} = {5 \over {{{\left( {2x + 1} \right)}^2}}} > 0\) với mọi \(x \ne  - {1 \over 2}\)

           

Hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - {1 \over 2}} \right)\) và \(\left( { - {1 \over 2}; + \infty } \right)\)
Đồ thị : Đồ thị cắt trục tung tại điểm \((0;-2)\) và cắt trục hoành tại điểm \((2;0)\).


LG b

Chứng minh rằng giao điểm \(I\) của hai đường tiệm cận của đồ thị là tâm đối xứng của đồ thị.

Lời giải chi tiết:

Giao điểm hai tiệm cận của đồ thị \(I\left( { - {1 \over 2};{1 \over 2}} \right)\)
Công thức đổi trục tọa độ theo vecto \(\overrightarrow {OI} \) là:

\(\left\{ \matrix{
x = X - {1 \over 2} \hfill \cr 
y = Y + {1 \over 2} \hfill \cr} \right.\)

Phương trình của đồ thị \((C)\) đối với trục \(IXY\):

\(Y + {1 \over 2} = {{X - {1 \over 2} - 2} \over {2\left( {X - {1 \over 2}} \right) + 1}} \) \(\Leftrightarrow Y + {1 \over 2} = {{X - {5 \over 2}} \over {2X}} = \frac{1}{2} - \frac{5}{{4X}} \) \(\Leftrightarrow Y =  - {5 \over {4X}}\)

Đây là hàm số lẻ nên đồ thị nhận I làm tâm đối xứng.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"