Bài 64 trang 57 SGK giải tích 12 nâng cao

2024-09-14 19:39:04

Cho hàm số \(y = {{a{x^2} - bx} \over {x - 1}}\)

LG a

Tìm \(a\) và \(b\) biết rằng đồ thị \((C)\) của hàm số đã cho đi qua điểm \(A\left( { - 1;{5 \over 2}} \right)\) và tiếp tuyến của \((C)\) tại điểm \(O(0;0)\) có hệ số bằng \(-3\).

Lời giải chi tiết:

\(y' = {{\left( {2ax - b} \right)\left( {x - 1} \right) - \left( {a{x^2} - bx} \right)} \over {{{\left( {x - 1} \right)}^2}}}\) \(= \frac{{a{x^2} - 2ax + b}}{{{{\left( {x - 1} \right)}^2}}}\)

Đồ thị \((C)\) đi qua \(A\left( { - 1;{5 \over 2}} \right)\) \( \Leftrightarrow y\left( { - 1} \right) = {5 \over 2} \Leftrightarrow {{a + b} \over { - 2}} = {5 \over 2} \) \(\Leftrightarrow a + b =  - 5\,\,\,\left( 1 \right)\)

Tiếp tuyến của \((C)\) tại \(O(0;0)\) có hệ số góc bằng \(-3\) khi và chỉ khi \(y’(0) = -3 \) \( \Leftrightarrow \frac{{a{{.0}^2} - 2a.0 + b}}{{{{\left( {0 - 1} \right)}^2}}} =  - 3\) \( \Leftrightarrow b =  - 3\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra \(a = -2; b = - 3\).


LG b

Khảo sát sự biến thiên và vẽ đồ thị của hàm số với các giá trị của \(a\) và \(b\) đã tìm được.

Lời giải chi tiết:

Với \(a = -2; b = - 3\) ta có: \(y = {{ - 2{x^3} + 3x} \over {x - 1}}\)

Tập xác định: \(D = \mathbb R\backslash \left\{ 1 \right\}\)

\(y' = {{ - 2{x^2} + 4x - 3} \over {{{(x - 1)}^2}}} < 0\,\forall x \in D\)

Hàm số nghịch biến trên khoảng: \(( - \infty ;1)\) và \((1; + \infty )\)

Hàm số không có cực trị

Giới hạn:

\(\mathop {\lim y}\limits_{x \to  {1^ - }}  =  - \infty ;\,\mathop {\lim y}\limits_{x \to   {1^ + }}  =  + \infty \)

Tiệm cận đứng là: \(x=1\)

\(\eqalign{
& a = \mathop {\lim }\limits_{x \to \infty } {y \over x} \cr&= \mathop {\lim }\limits_{x \to \infty } {{ - 2{x^2} + 3x} \over {{x^2} - x}} = - 2 \cr 
& b = \mathop {\lim }\limits_{x \to \infty } (y + 2x) \cr&= \mathop {\lim }\limits_{x \to \infty } \left( {{{ - 2{x^2} + 3x} \over {x - 1}} + 2x} \right) = 1 \cr} \)

Tiệm cận xiên là: \(y=-2x+1\)

Bảng biến thiên:

Đồ thị giao \(Oy\) tại điểm \((0;0)\) và \(\left( {{3 \over 2};0} \right)\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"