Bài 59 trang 56 SGK giải tích 12 nâng cao

2024-09-14 19:39:07

Đề bài

Chứng minh rằng các đồ thị của ba hàm số: \(f\left( x \right) =  - {x^2} + 3x + 6\); \(g\left( x \right) = {x^3} - {x^2} + 4\) và \(h\left( x \right) = {x^2} + 7x + 8\) tiếp xúc với nhau tại điểm \(A(-1;2)\) (tức là chúng có cùng tiếp tuyến tại \(A\)).

Lời giải chi tiết

Ta có: \(f\left( { - 1} \right) = g\left( { - 1} \right) = h\left( { - 1} \right) = 2\)

Do đó điểm \(A(-1;2)\) là điểm chung của ba đường cong đã cho. Ngoài ra, ta có:

\(\eqalign{
& f'\left( x \right) = - 2x + 3;\,g'\left( x \right) = 3{x^2} - 2x;\cr&h'\left( x \right) = 2x + 7 \cr 
& f'\left( { - 1} \right)=-2.(-1)+3=5 \cr& g'\left( { - 1} \right) =3.(-1)^2-2.(-1)=5\cr& h'\left( { - 1} \right) = 2.(-1)+7=5 \cr} \)

Do đó ba đường cong cùng đi qua A và có hệ số góc của tiếp tuyến tại A bằng nhau.

Vậy ba đường cong có tiếp tuyến chung điểm \(A\) nên chúng tiếp xúc tại A.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"