Bài 70 trang 61 SGK giải tích 12 nâng cao

2024-09-14 19:39:20

Đề bài

Người ta định làm một cái hộp hình trụ bằng tôn có thể tích \(V\) cho trước. Tìm bán kính đáy \(r\) và chiều cao của hình trụ sao cho tốn ít nguyên liệu nhất.

Lời giải chi tiết

Thể tích của hình trụ là: \(V = B.h = \pi {r^2}.h \Rightarrow h = {V \over {\pi {r^2}}}\)

Diện tích toàn phần của hình trụ là:

\(S = 2\pi {r^2} + 2\pi r.h = 2\pi {r^2} + 2\pi .r.{V \over {\pi {r^2}}} \) \(= 2\pi {r^2} + {{2V} \over r}\)

Xét hàm số: 

\(\eqalign{
& S\left( r \right) = 2\pi {r^2} + {{2V} \over r}\,\,\left( {r > 0} \right) \cr 
& S' = 4\pi r - {{2V} \over {{r^2}}} = {{4\pi {r^3} - 2V} \over {{r^2}}} \cr 
& S' = 0 \Leftrightarrow 4\pi {r^3} - 2V = 0\cr& \Leftrightarrow {r^3} = \frac{V}{{2\pi }} \Leftrightarrow r = \root 3 \of {{V \over {2\pi }}} \cr} \)

Bảng biến thiên: 

\(S\) đạt giá trị nhỏ nhất tại điểm \(r = \root 3 \of {{V \over {2\pi }}} \) khi đó \(h = {V \over {\pi {r^2}}} = {V \over {\pi \root 3 \of {{{{V^2}} \over {4{\pi ^2}}}} }} = \root 3 \of {{{4V} \over \pi }} \)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"