Bài 69 trang 61 SGK giải tích 12 nâng cao

2024-09-14 19:39:21

Xét chiều biến thiên và tìm cực trị (nếu có) của các hàm số sau:

LG a

\(y = \sqrt {3x + 1} \)

Lời giải chi tiết:

TXĐ: \(D = \left[ { - {1 \over 3}; + \infty } \right)\)

\(y' = {3 \over {2\sqrt {3x + 1} }} > 0\,\forall x >  - {1 \over 3}\)

Hàm số đồng biến \(\left( { - {1 \over 3}; + \infty } \right)\), hàm số không có cực trị.


LG b

\(y = \sqrt {4x - {x^2}} \)

Lời giải chi tiết:

ĐK: \(4x - {x^2} \ge 0 \Leftrightarrow 0 \le x \le 4\)

TXĐ: \(D = \left[ {0;4} \right]\)

\(y' = {{4 - 2x} \over {2\sqrt {4x - {x^2}} }}\), \(\forall x \in \left( {0;4} \right)\)

\(y' = 0 \Leftrightarrow x = 2;\,y\left( 2 \right) = 2\)

Bảng biến thiên

Hàm số đạt cực đại tại điểm \(x = 2\); giá trị cực đại \(y(2) = 2\).


LG c

\(y = x + \sqrt x \)

Lời giải chi tiết:

TXĐ:  \(D = \left[ {0; + \infty } \right)\)

\(y' = 1 + {1 \over {2\sqrt x }} > 0,\,\forall x > 0\)

Hàm số đồng biến trên khoảng \(\left( {0; + \infty } \right)\), hàm số không có cực trị.


LG d

\(y = x - \sqrt x \)

Lời giải chi tiết:

TXĐ: \(D = \left[ {0; + \infty } \right)\)

\( y' = 1 - {1 \over {2\sqrt x }} \), \(\forall x \in \left( {0; + \infty } \right)\)

\(y' = 0 \)\( \Leftrightarrow 1 - \frac{1}{{2\sqrt x }} = 0\)

\( \Leftrightarrow \frac{{2\sqrt x  - 1}}{{2\sqrt x }} = 0 \Leftrightarrow 2\sqrt x  - 1 = 0\) \( \Leftrightarrow \sqrt x  = \frac{1}{2} \Leftrightarrow x = \frac{1}{4}\)

Hàm số đạt cực tiểu tại điểm \(x = {1 \over 4}\); giá trị cực tiểu \(y\left( {{1 \over 4}} \right) =  - {1 \over 4}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"