Bài 10 trang 78 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:39:26

Chứng minh:

LG a

\(\sqrt {4 + 2\sqrt 3 }  - \sqrt {4 - 2\sqrt 3 }  = 2;\)

Lời giải chi tiết:

Ta có:

\(4 \pm 2\sqrt 3  \)

\(= {\left( {\sqrt 3 } \right)^2} \pm 2\sqrt 3  + 1 \)

\(= {\left( {\sqrt 3  \pm 1} \right)^2}\)

nên

\(\sqrt {4 + 2\sqrt 3 }  - \sqrt {4 - 2\sqrt 3 } \)

\(\begin{array}{l}
= \sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} - \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} \\
= \left| {\sqrt 3 + 1} \right| - \left| {\sqrt 3 - 1} \right|\\
= \left( {\sqrt 3 + 1} \right) - \left( {\sqrt 3 - 1} \right)\\
= 2
\end{array}\)


LG b

\(\root 3 \of {9 + \sqrt {80} }  + \root 3 \of {9 - \sqrt {80} }  = 3\)

Phương pháp giải:

Áp dụng hằng đẳng thức \({\left( {A + B} \right)^3} = {A^3} + {B^3} + 3AB\left( {A + B} \right)\)

Lời giải chi tiết:

Đặt \(x = \root 3 \of {9 + \sqrt {80} }  + \root 3 \of {9 - \sqrt {80} } \)

Ta có \({x^3} = {\left( {\root 3 \of {9 + \sqrt {80} }  + \root 3 \of {9 - \sqrt {80} } } \right)^3}\)

\( = 9 + \sqrt {80}  + 9 - \sqrt {80}  \) \(+ 3\root 3 \of {9 + \sqrt {80} } .\root 3 \of {9 - \sqrt {80} } \)\(.\left( {\root 3 \of {9 + \sqrt {80} }  + \root 3 \of {9 - \sqrt {80} } } \right) \)

\( = 18 + 3\root 3 \of {81 - 80} .x = 18 + 3x\).

Do đó: \({x^3} - 3x - 18 = 0\,\,\left( * \right)\)

Mà \({x^3} - 3x - 18\) \( = \left( {x - 3} \right)\left( {{x^2} + 3x + 6} \right)\) nên (*) \( \Leftrightarrow \) x=3

(vì \({x^2} + 3x + 6 > 0,\forall x\))

Vậy \(\root 3 \of {9 + \sqrt {80} }  + \root 3 \of {9 - \sqrt {80} }  = 3\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"