Bài 9 trang 78 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:39:26

Đề bài

Từ tính chất của lũy thừa với số mũ nguyên dương, chứng minh:

\(\root n \of {ab}  = \root n \of a .\root n \of b \) ( \(a \ge 0,b \ge 0\), n nguyên dương)

Lời giải chi tiết

Theo tính chất của lũy thừa với số mũ nguyên dương, ta có:

\({\left( {\root n \of a .\root n \of b \,} \right)^n} = {\left( {\root n \of a } \right)^n}.{\left( {\root n \of b } \right)^n} = ab\)

Do đó theo định nghĩa căn bậc n của một số, ta có \(\root n \of {ab}  = \root n \of a .\root n \of b \).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"