Bài 1 trang 75 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:39:30

Đề bài

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

a) Với số thực a và các số nguyên m, n, ta có:
\({a^m}.{a^n} = {a^{m.n}};{{{a^m}} \over {{a^n}}} = {a^{m - n}}\)

b) Với hai số thực a, b cùng khác 0 và số nguyên n, ta có:
\({\left( {ab} \right)^n} = {a^n}.{b^n};{\left( {{a \over b}} \right)^n} = {{{a^n}} \over {{b^n}}}\)

c) Với hai số thực a, b thỏa mãn 0 < a < b với số nguyên a, ta có an < bn

d) Với số thực a khác 0 và hai số nguyên m, n, ta có: Nếu m>n thì \({a^m} > {a^n}\).

Lời giải chi tiết

a) Sai. Sửa lại:

Với số thực a khác 0 và các số nguyên m, n, ta có:
\({a^m}.{a^n} = {a^{m+n}};{{{a^m}} \over {{a^n}}} = {a^{m - n}}\)

b) Đúng.

c) Sai (chẳng hạn \(a^0=b^0\))

d) Sai. Chẳng hạn 3 > 2 nhưng \({\left( {{1 \over 2}} \right)^3} < {\left( {{1 \over 2}} \right)^2}\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"