Bài 21 trang 82 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:39:31

Giải các phương trình sau bằng cách đặt \(t = \root 4 \of x \):

a) \(\sqrt x  + \root 4 \of x  = 2;\)

b) \(\sqrt x  - 3\root 4 \of x  + 2 = 0\)

LG a

\(\sqrt x  + \root 4 \of x  = 2;\)

Phương pháp giải:

- Đặt ẩn phụ \(t = \root 4 \of x \) và đặt điều kiện cho ẩn.

- Biến đổi phương trình về ẩn phụ, chú ý \({\left( {\sqrt[4]{x}} \right)^2} = \sqrt x \).

Lời giải chi tiết:

Điều kiện \(x \ge 0\)
Đặt \(t = \root 4 \of x \left( {t \ge 0} \right)\), ta được 

\({t^2} + t = 2\)

\(\Leftrightarrow {t^2} + t - 2 = 0\)

\(\Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr 
t = - 2(\text{ loại }) \hfill \cr} \right.\)

\( \Rightarrow \root 4 \of x  = 1 \Leftrightarrow x = 1\)

Vậy tập nghiệm phương trình là S =\(\left\{ 1 \right\}\)


LG b

\(\sqrt x  - 3\root 4 \of x  + 2 = 0\)

Lời giải chi tiết:

Điều kiện \(x \ge 0\). Đặt \(t = \root 4 \of x \,\,\left( {t \ge 0} \right)\) ta được phương trình

\({t^2} - 3t + 2 = 0 \)

\(\Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr 
t = 2 \hfill \cr} \right. \)

\(\Rightarrow \left[ \matrix{
\root 4 \of x = 1 \hfill \cr 
\root 4 \of x = 2 \hfill \cr} \right. \)

\(\Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr 
x = 16 \hfill \cr} \right.\)

Vậy \(S = \left\{ {1;16} \right\}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"