Bài 39 trang 93 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:39:34

Tìm x, biết:

LG a

\({\log _x}27 = 3\)

Phương pháp giải:

Áp dụng: \({\log _a}b = c \Leftrightarrow b = {a^c}.\)

Lời giải chi tiết:

Điều kiện: x>0 và \(x \ne 1\)

\({\log _x}27 = 3 \Leftrightarrow {x^3} = 27 = {3^3}\)

\(\Leftrightarrow x = 3\) (TM)


LG b

\({\log _x}{1 \over 7} =  - 1\)

Lời giải chi tiết:

Điều kiện: x>0 và \(x \ne 1\)

\({\log _x}{1 \over 7} =  - 1 \)\( \Leftrightarrow {x^{ - 1}} = \frac{1}{7}\)

\( \Leftrightarrow \frac{1}{x} = \frac{1}{7} \Leftrightarrow x = 7\) (TM)


LG c

\({\log _x}\sqrt 5  =  - 4\)

Lời giải chi tiết:

Điều kiện: x>0 và \(x \ne 1\)

\({\log _x}\sqrt 5  =  - 4 \Leftrightarrow {x^{ - 4}} = \sqrt 5\)

\(\begin{array}{l}
\Leftrightarrow {\left( {{x^{ - 4}}} \right)^{ - \frac{1}{4}}} = {\left( {\sqrt 5 } \right)^{ - \frac{1}{4}}}\\
\Leftrightarrow {x^{ - 4.\left( { - \frac{1}{4}} \right)}} = {\left( {{5^{\frac{1}{2}}}} \right)^{ - \frac{1}{4}}}\\
\Leftrightarrow {x^1} = {5^{\frac{1}{2}.\left( { - \frac{1}{4}} \right)}}\\
\Leftrightarrow x = {5^{ - \frac{1}{8}}}
\end{array}\)

Cách khác:

\(\begin{array}{l}
{\log _x}\sqrt 5 = - 4\\
\Leftrightarrow \frac{{{{\log }_{\sqrt 5 }}\sqrt 5 }}{{{{\log }_{\sqrt 5 }}x}} = - 4\\
\Leftrightarrow \frac{1}{{{{\log }_{\sqrt 5 }}x}} = - 4\\
\Leftrightarrow {\log _{\sqrt 5 }}x = - \frac{1}{4}\\
\Leftrightarrow x = {\left( {\sqrt 5 } \right)^{ - \frac{1}{4}}}\\
\Leftrightarrow x = {5^{ - \frac{1}{8}}}
\end{array}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"