Bài 35 trang 92 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:39:35

Trong mỗi trường hợp sau, hãy tính \({\log _a}x\) biết \({\log _a}b = 3,{\log _a}c =  - 2\):

a) \(x = {a^3}{b^2}\sqrt c ;\)

b) \(x = {{{a^4}\root 3 \of b } \over {{c^3}}}.\)

LG a

\(x = {a^3}{b^2}\sqrt c\)

Lời giải chi tiết:

\({\log _a}x = {\log _a}\left( {{a^3}{b^2}\sqrt c } \right)\)

\(\begin{array}{l}
= {\log _a}{a^3} + {\log _a}{b^2} + {\log _a}\sqrt c \\
= 3{\log _a}3 + 2{\log _a}b + {\log _a}{c^{\frac{1}{2}}}
\end{array}\)

\(= 3 + 2{\log _a}b + {1 \over 2}{\log _a}c \)

\(= 3 + 2.3 + {1 \over 2}\left( { - 2} \right) = 8\).


LG b

\(x = {{{a^4}\root 3 \of b } \over {{c^3}}}.\)

Lời giải chi tiết:

\({\log _a}x = {\log _a}\left( {{{{a^4}\root 3 \of b } \over {{c^3}}}} \right)\)

\(\begin{array}{l}
= {\log _a}\left( {{a^4}\sqrt[3]{b}} \right) - {\log _a}{c^3}\\
= {\log _a}{a^4} + {\log _a}\sqrt[3]{b} - {\log _a}{c^3}\\
= 4{\log _a}a + {\log _a}{b^{\frac{1}{3}}} - {\log _a}{c^3}
\end{array}\)

\( = 4 + {1 \over 3}{\log _a}b - 3{\log _a}c \)

\(= 4 + {1 \over 3}.3 - 3\left( { - 2} \right) = 11\).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"