Bài 46 trang 97 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:39:38

Đề bài

Cho biết chu kì bán hủy của chất phóng xạ Plutanium \(P{u^{239}}\) là 24360 năm (tức là một lượng \(P{u^{239}}\) sau 24360 năm phân hủy chỉ còn lại một nửa). Sự phân hủy được tính theo công thức \(S = A.{e^{rt}}\), trong đó A là lượng chất phóng xạ ban đầu, r là tỉ lệ phân hủy hàng năm (r < 0), t là thời gian phân hủy, S là lượng còn lại sau thời gian phân hủy t. Hỏi 10 gam \(P{u^{239}}\) sau bao nhiêu năm phân hủy sẽ còn 1 gam?

Lời giải chi tiết

- Tính tỉ lệ phân hủy:

Ta có:

\(\begin{array}{l}\frac{1}{2}A = A.{e^{r.24360}}\\ \Leftrightarrow \frac{1}{2} = {e^{r.24360}}\\ \Leftrightarrow r.24360 = \ln \frac{1}{2} =  - \ln 2\\ \Leftrightarrow r =  - \frac{{\ln 2}}{{24360}} \\ \Rightarrow S = A{e^{ rt}}\end{array}\)

- Tính thời gian phân hủy chất đó từ 10 gam chỉ còn 1 gam:

Thay \(A = 10,S = 1\) vào công thức trên ta được:

\(\begin{array}{l}1 = 10.{e^{ rt}}\\ \Leftrightarrow \frac{1}{{10}} = {e^{ rt}}\\ \Leftrightarrow  - \frac{{\ln 2}}{{24360}}t = \ln \frac{1}{{10}} =  - \ln 10\\ \Leftrightarrow t = \frac{{ - \ln 10}}{{ - \frac{{\ln 2}}{{24360}}}}\\ \Leftrightarrow t \approx 80922,17\end{array}\)

Vậy sau khoảng 80923 năm thì 10 gam chất \(P{u^{239}}\) sẽ phân hủy còn 1 gam.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"