Bài 49 trang 112 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:39:44

Tính đạo hàm của các hàm số sau:

LG a

\(y = \left( {x - 1} \right){e^{2x}}\)

Phương pháp giải:

Sử dụng công thức đạo hàm của tích:

(uv)'=u'v+uv'

Đạo hàm hàm mũ: \(\left( {{e^u}} \right)' = u'{e^u}\)

Lời giải chi tiết:

\(\begin{array}{l}
y'= \left[ {\left( {x - 1} \right){e^{2x}}} \right]'\\
= \left( {x - 1} \right)'{e^{2x}} + \left( {x - 1} \right)\left( {{e^{2x}}} \right)'
\end{array}\)

\(= {e^{2x}} + \left( {x - 1} \right).2{e^{2x}} \)

\(\begin{array}{l}
= {e^{2x}} + \left( {2x - 2} \right){e^{2x}}\\
= \left( {1 + 2x - 2} \right){e^{2x}}
\end{array}\)

\(= \left( {2x - 1} \right).{e^{2x}}\)


LG b

\(y = {x^2}.\sqrt {{e^{4x}} + 1} ;\)

Phương pháp giải:

Sử dụng công thức đạo hàm của tích:

(uv)'=u'v+uv'

Đạo hàm hàm mũ: \(\left( {{e^u}} \right)' = u'{e^u}\)

Đạo hàm hàm số căn bậc hai: \(\left( {\sqrt u } \right)' = \frac{{u'}}{{2\sqrt u }}\)

Lời giải chi tiết:

\(\begin{array}{l}
y' = \left( {{x^2}\sqrt {{e^{4x}} + 1} } \right)'\\
= \left( {{x^2}} \right)'\sqrt {{e^{4x}} + 1} + {x^2}\left( {\sqrt {{e^{4x}} + 1} } \right)'\\
= 2x\sqrt {{e^{4x}} + 1} + {x^2}.\frac{{\left( {{e^{4x}} + 1} \right)'}}{{2\sqrt {{e^{4x}} + 1} }}\\
= 2x\sqrt {{e^{4x}} + 1} + {x^2}.\frac{{4{e^{4x}}}}{{2\sqrt {{e^{4x}} + 1} }}\\
= 2x\sqrt {{e^{4x}} + 1} + \frac{{2{x^2}{e^{4x}}}}{{\sqrt {{e^{4x}} + 1} }}\\
= \frac{{2x\left( {{e^{4x}} + 1} \right) + 2{x^2}{e^{4x}}}}{{\sqrt {{e^{4x}} + 1} }}\\
= \frac{{2x{e^{4x}} + 2x + 2{x^2}{e^{4x}}}}{{\sqrt {{e^{4x}} + 1} }}\\
= \frac{{2x{e^{4x}}\left( {1 + x} \right) + 2x}}{{\sqrt {{e^{4x}} + 1} }}
\end{array}\)


LG c

\(y = {1 \over 2}\left( {{e^x} - {e^{ - x}}} \right);\) 

Lời giải chi tiết:

\(\begin{array}{l}
y' = \frac{1}{2}\left( {{e^x} - {e^{ - x}}} \right)'\\
= \frac{1}{2}\left[ {\left( {{e^x}} \right)' - \left( {{e^{ - x}}} \right)'} \right]\\
= \frac{1}{2}\left[ {{e^x} - \left( { - 1} \right){e^{ - x}}} \right]\\
= \frac{1}{2}\left( {{e^x} + {e^{ - x}}} \right)
\end{array}\)


LG d

\(y = {1 \over 2}\left( {{e^x} + {e^{ - x}}} \right);\)

Lời giải chi tiết:

\(\begin{array}{l}
y' = \frac{1}{2}\left( {{e^x} + {e^{ - x}}} \right)'\\
= \frac{1}{2}\left[ {\left( {{e^x}} \right)' + \left( {{e^{ - x}}} \right)'} \right]\\
= \frac{1}{2}\left[ {{e^x} + \left( { - 1} \right){e^{ - x}}} \right]\\
= \frac{1}{2}\left( {{e^x} - {e^{ - x}}} \right)
\end{array}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"