Bài 58 sách giải tích 12 nâng cao trang 117

2024-09-14 19:39:48

Tìm đạo hàm của các hàm số sau:

LG a

\(y = {\left ( {2x + 1} \right)^\pi }\)

Lời giải chi tiết:

\(\begin{array}{l}
y' = \left[ {{{\left( {2x + 1} \right)}^\pi }} \right]'\\
= \pi .\left( {2x - 1} \right)'.{\left( {2x + 1} \right)^{\pi - 1}}\\
= \pi .2{\left( {2x + 1} \right)^{\pi - 1}}\\
= 2\pi {\left( {2x + 1} \right)^{\pi - 1}}
\end{array}\)


LG b

\(y = \root 5 \of {{{\ln }^3}5x} \)

Phương pháp giải:

Áp dụng: \(\left( {\root n \of u } \right)' = {u' \over {n\root n \of {{u^{n - 1}}} }}\)

Lời giải chi tiết:

\(y' = {{\left( {{{\ln }^3}5x} \right)'} \over {5\root 5 \of {{{\left( {{{\ln }^3}5x} \right)}^4}} }} \)

\( = \frac{{3{{\ln }^2}5x.\left( {\ln 5x} \right)'}}{{5\sqrt[5]{{{{\left( {{{\ln }^3}5x} \right)}^4}}}}} \) \(= \frac{{3{{\ln }^2}5x.\frac{{\left( {5x} \right)'}}{{5x}}}}{{5\sqrt[5]{{{{\ln }^{12}}5x}}}} \) \(= \frac{{3{{\ln }^2}5x.\frac{5}{{5x}}}}{{5\sqrt[5]{{{{\ln }^{10}}5x.{{\ln }^2}5x}}}} \) \(= \frac{{3{{\ln }^2}5x.\frac{1}{x}}}{{5{{\ln }^2}5x\sqrt[5]{{{{\ln }^2}5x}}}} \) \(= \frac{3}{{5x\sqrt[5]{{{{\ln }^2}5x}}}}\)

Cách khác:

\(\begin{array}{l}
y = \sqrt[5]{{{{\ln }^3}5x}} = {\left( {\ln 5x} \right)^{\frac{3}{5}}}\\
y' = \left[ {{{\left( {\ln 5x} \right)}^{\frac{3}{5}}}} \right]'\\
= \frac{3}{5}{\left( {\ln 5x} \right)^{\frac{3}{5} - 1}}\left( {\ln 5x} \right)'\\
= \frac{3}{5}{\left( {\ln 5x} \right)^{ - \frac{2}{5}}}.\frac{5}{{5x}}\\
= \frac{3}{5}.\frac{1}{{{{\left( {\ln 5x} \right)}^{\frac{2}{5}}}}}.\frac{1}{x}\\
= \frac{3}{{5x\sqrt[5]{{{{\ln }^2}5x}}}}
\end{array}\)


LG c

\(y = \root 3 \of {{{1 + {x^3}} \over {1 - {x^3}}}} \) 

Lời giải chi tiết:

Đặt \(u = {{1 + {x^3}} \over {1 - {x^3}}} \Rightarrow y = \sqrt[3]{u}\Rightarrow y' = {{u'} \over {3\root 3 \of {{u^2}} }}\)

\(\begin{array}{l}
u' = \frac{{\left( {1 + {x^3}} \right)'\left( {1 - {x^3}} \right) - \left( {1 + {x^3}} \right)\left( {1 - {x^3}} \right)'}}{{{{\left( {1 - {x^3}} \right)}^2}}}\\
= \frac{{3{x^2}\left( {1 - {x^3}} \right) - \left( {1 + {x^3}} \right)\left( { - 3{x^2}} \right)}}{{{{\left( {1 - {x^3}} \right)}^2}}}\\
= \frac{{3{x^2} - 3{x^5} + 3{x^2} + 3{x^5}}}{{{{\left( {1 - {x^3}} \right)}^2}}}\\
= \frac{{6{x^2}}}{{{{\left( {1 - {x^3}} \right)}^2}}}\\
\Rightarrow y' = \frac{{\frac{{6{x^2}}}{{{{\left( {1 - {x^3}} \right)}^2}}}}}{{3\sqrt[3]{{{{\left( {\frac{{1 + {x^3}}}{{1 - {x^3}}}} \right)}^2}}}}}
\end{array}\)

\(= {{2{x^2}} \over {{{\left( {1 - {x^3}} \right)}^2}}}.{1 \over {\root 3 \of {{{\left( {{{1 + {x^3}} \over {1 - {x^3}}}} \right)}^2}} }} \)

\( = \frac{{2{x^2}}}{{\sqrt[3]{{{{\left( {1 - {x^3}} \right)}^6}.\frac{{{{\left( {1 + {x^3}} \right)}^2}}}{{{{\left( {1 - {x^3}} \right)}^2}}}}}}}\)

\(= {{2{x^2}} \over {\root 3 \of {{{\left( {1 - {x^3}} \right)}^4}{{\left( {1 + {x^3}} \right)}^2}} }}\)


LG d

\(y = {\left( {{x \over b}} \right)^a}{\left( {{a \over x}} \right)^b}\) với a > 0, b> 0

Lời giải chi tiết:

\(y = {\left( {\frac{x}{b}} \right)^a}.{\left( {\frac{a}{x}} \right)^b} = \frac{{{x^a}}}{{{b^a}}}.\frac{{{a^b}}}{{{x^b}}} = \frac{{{a^b}}}{{{b^a}}}.{x^{a - b}}\)

\(y' = \left( {\frac{{{a^b}}}{{{b^a}}}{x^{a - b}}} \right)' = \frac{{{a^b}}}{{{b^a}}}.\left( {a - b} \right)\left( {{x^{a - b - 1}}} \right)\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"