Bài 64 trang 124 SGK giải tích 12 nâng cao

2024-09-14 19:39:52

Giải các phương trình sau: 

LG a

\({\log _2}\left[ {x\left( {x - 1} \right)} \right] = 1\)

Lời giải chi tiết:

Điều kiện: \(x\left( {x - 1} \right) > 0\)

\( \Leftrightarrow \left[ \begin{array}{l}
x > 1\\
x < 0
\end{array} \right.\,\,\left( * \right)\)

Khi đó,

\({\log _2}\left[ {x\left( {x - 1} \right)} \right] = 1 \)

\(\Leftrightarrow x\left( {x - 1} \right) = 2\)

\(\Leftrightarrow {x^2} - x - 2 = 0\)

\(\Leftrightarrow \left[ \matrix{
x = - 1 \hfill \cr 
x = 2 \hfill \cr} \text{ (thỏa mãn) } \right.\)

Vậy \(S = \left\{ { - 1;2} \right\}\)


LG b

\({\log _2}x + {\log _2}\left( {x - 1} \right) = 1\)

Lời giải chi tiết:

Điều kiện: 

\(\left\{ \begin{array}{l}
x > 0\\
x - 1 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x > 0\\
x > 1
\end{array} \right. \Leftrightarrow x > 1\)

Khi đó,

\(\eqalign{
& {\log _2}x + {\log _2}\left( {x - 1} \right) = 1 \cr&\Leftrightarrow {\log _2}\left[ {x\left( {x - 1} \right)} \right] = 1 \cr 
&  \Leftrightarrow x\left( {x - 1} \right) = 2\cr& \Leftrightarrow {x^2} - x = 2\cr&\Leftrightarrow {x^2} - x - 2 = 0 \cr 
& \Leftrightarrow \left[ \matrix{
x = - 1(\text{ loại }) \hfill \cr 
x = 2 \hfill \cr} \right. \cr} \)

Vậy \(S = \left\{ 2 \right\}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"