Bài 79 trang 127 SGK giải tích 12 nâng cao

2024-09-14 19:39:52

Giải hệ phương trình :

LG a

\(\left\{ \matrix{
{3.2^x} + {2.3^y} = 2,75 \hfill \cr 
{2^x} - {3^y} = - 0,75\,; \hfill \cr} \right.\)

Lời giải chi tiết:

Đặt \(u = {2^x},\,v = {3^y}\,\left( {u > 0,\,v > 0} \right)\)

Ta có hệ phương trình: 

\(\left\{ \matrix{
3u + 2v = 2,75 \hfill \cr 
u - v = - 0,75 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
u = {1 \over 4} \hfill \cr 
v = 1 \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
{2^x} = {1 \over 4} \hfill \cr 
{3^y} = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - 2 \hfill \cr 
y = 0 \hfill \cr} \right.\)                               

Vậy \(S = \left\{ {\left( { - 2;0} \right)} \right\}\)


LG b

\(\left\{ \matrix{
{\log _5}x + {\log _5}7.{\log _7}y = 1 + {\log _5}2 \hfill \cr 
3 + {\log _2}y = {\log _2}5  \left(1+ {3{{\log }_5}x} \right) \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

\(\left\{ \matrix{
{\log _5}x + {\log _5}7.{\log _7}y = 1 + {\log _5}2 \hfill \cr 
3 + {\log _2}y = {\log _2}5  \left(1+ {3{{\log }_5}x} \right) \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}
{\log _5}x + {\log _5}7.{\log _7}y = 1 + {\log _5}2\\
3 + {\log _2}y = {\log _2}5 + 3{\log _2}5.{\log _5}x
\end{array} \right.\)

Điều kiện: \(x > 0\) và \(y > 0\).

Khi đó \({\log _5}7.{\log _7}y={\log _5}y  \) và \({\log _2}5.{\log _5}x = {\log _2}x\) nên hệ tương đương:

\(\eqalign{
& \left\{ \matrix{
{\log _5}x + {\log _5}y = 1 + {\log _5}2 \hfill \cr 
3 + {\log _2}y = {\log _2}5 + 3{\log _2}x \hfill \cr} \right. \cr& \Leftrightarrow \left\{ \begin{array}{l}{\log _5}x + {\log _5}y = {\log _5}5 + {\log _5}2\\{\log _2}{2^3} + {\log _2}y = {\log _2}5 + {\log _2}{x^3}\end{array} \right.\cr&\Leftrightarrow \left\{ \matrix{{\log _5}xy = {\log _5}10 \hfill \cr {\log _2}8y = {\log _2}5{x^3} \hfill \cr} \right. \cr & \Leftrightarrow \left\{ \matrix{xy = 10\,\,\,\left( 1 \right) \hfill \cr 8y = 5{x^3}\,\,\left( 2 \right) \hfill \cr} \right. \cr} \)                   

\(\left( 2 \right) \Rightarrow y = {{5{x^3}} \over 8}\) thay vào (1) ta được:

\({{5{x^4}} \over 8} = 10 \Leftrightarrow {x^4} = 16 \Leftrightarrow x = 2\) (vì \(x > 0\))

Với \(x = 2\) ta có \(y = {{10} \over x} = 5\).

Vậy \(S = \left\{ {\left( {2;5} \right)} \right\}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"