Bài 75 trang 127 SGK giải tích 12 nâng cao

2024-09-14 19:39:53

LG a

\(\eqalign{
{\log _3}\left( {{3^x} - 1} \right).{\log _3}\left( {{3^{x + 1}} - 3} \right) = 12; \cr} \)   

Lời giải chi tiết:

Điều kiện:

\(\begin{array}{l}
\left\{ \begin{array}{l}
{3^x} - 1 > 0\\
{3^{x + 1}} - 3 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{3^x} - 1 > 0\\
{3.3^x} - 3 > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{3^x} - 1 > 0\\
3\left( {{3^x} - 1} \right) > 0
\end{array} \right. \Leftrightarrow {3^x} - 1 > 0\\
\Leftrightarrow {3^x} > 1 \Leftrightarrow x > 0
\end{array}\)

Ta có: \(lo{g_3}\left( {{3^x} - 1} \right).lo{g_3}\left( {{3^{x + 1}} - 3} \right) = 12\) 

\(\eqalign{
& \Leftrightarrow lo{g_3}\left( {{3^x} - 1} \right).lo{g_3}[3\left( {{3^x} - 1} \right)] = 12 \cr 
& \Leftrightarrow lo{g_3}\left( {{3^x} - 1} \right)\left[ {1 + lo{g_3}\left( {{3^x} - 1} \right)} \right] = 12 \cr} \)

\( \Leftrightarrow \log _3^2\left( {{3^x} - 1} \right) + lo{g_3}\left( {{3^x} - 1} \right) - 12 = 0\)

\(\eqalign{
& \Leftrightarrow \left[ \matrix{
lo{g_3}\left( {{3^x} - 1} \right) = - 4 \hfill \cr 
lo{g_3}\left( {{3^x} - 1} \right) = 3 \hfill \cr} \right. \cr&\Leftrightarrow \left[ \matrix{
{3^x} - 1 = 3^{-4}={1 \over {81}} \hfill \cr 
{3^x} - 1 = {3^3} = 27 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
{3^x} = {{82} \over {81}} \hfill \cr 
{3^x} = 28 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {\log _3}{{82} \over {81}} \hfill \cr 
x = {\log _3}28 \hfill \cr} \right. \cr} \)

Vậy \(S = \left\{ {{{\log }_3}28;{\log _3}{{82} \over {81}} } \right\}\)


LG b

\(\eqalign{
{\log _{x - 1}}4 = 1 + {\log _2}\left( {x - 1} \right); \cr} \)    

Lời giải chi tiết:

Điều kiện: \(0 < x - 1 \ne 1 \Leftrightarrow 1 < x \ne 2\)

Ta có: \({\log _{x - 1}}4 = {1 \over {{{\log }_4}\left( {x - 1} \right)}} \)

\( = \frac{1}{{{{\log }_{{2^2}}}\left( {x - 1} \right)}} = \frac{1}{{\frac{1}{2}{{\log }_2}\left( {x - 1} \right)}}\)

\(= {2 \over {{{\log }_2}\left( {x - 1} \right)}}\).

Đặt \(t = {\log _2}\left( {x - 1} \right)\)

Ta có phương trình:

\(\eqalign{
& {2 \over t} = 1 + t \Leftrightarrow {t^2} + t - 2 = 0 \cr 
& \Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr 
t = - 2 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{\log _2}\left( {x - 1} \right) = 1 \hfill \cr 
{\log _2}\left( {x - 1} \right) = - 2 \hfill \cr} \right.\cr& \Leftrightarrow \left[ \begin{array}{l}x - 1 = 2\\x - 1 = {2^{ - 2}} = \frac{1}{4}\end{array} \right. \cr&\Leftrightarrow \left[ \matrix{x = 3 \hfill \cr x = {5 \over 4} \hfill \cr} \right. (TM)\cr} \)

Vậy \(S = \left\{ {3;{5 \over 4}} \right\}\)


LG c

\(\eqalign{
5\sqrt {{{\log }_2}\left( { - x} \right)} = {\log _2}\sqrt {{x^2}} ; \cr} \)   

Lời giải chi tiết:

Điều kiện:

\(\left\{ \begin{array}{l}
- x > 0\\
{\log _2}\left( { - x} \right) \ge 0\\
\sqrt {{x^2}} > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x < 0\\
- x \ge {2^0} = 1\\
x \ne 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
x < 0\\
x \le - 1
\end{array} \right. \Leftrightarrow x \le - 1\)

\(5\sqrt {{{\log }_2}\left( { - x} \right)}  = {\log _2}\sqrt {{x^2}} \)

\( \Leftrightarrow 5\sqrt {{{\log }_2}\left( { - x} \right)}  = {\log _2}\left| x \right|\)

\(\Leftrightarrow 5\sqrt {{{\log }_2}\left( { - x} \right)}  = {\log _2}\left( { - x} \right)\) (vì \(x \le  - 1 \Rightarrow \left| x \right| =  - x\))

Đặt \(t = {\log _2}\left( { - x} \right) \ge 0\) ta được:

\(\eqalign{
& 5\sqrt t  = t \Leftrightarrow 25t = {t^2} \cr &\Leftrightarrow \left[ \matrix{
t = 0 \hfill \cr 
t = 25 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{\log _2}\left( { - x} \right) = 0 \hfill \cr 
lo{g_2}\left( { - x} \right) = 25 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = - 1 \hfill \cr 
x = - {2^{25}} \hfill \cr} \right. \cr} \)

Vậy \(S = \left\{ { - 1; - {2^{25}}} \right\}\)


LG d

\(\eqalign{
{3^{{{\log }_4} x+ {1 \over 2}}} + \,{3^{{{\log }_4} x- {1 \over 2}}} = \sqrt x . \cr} \)    

Lời giải chi tiết:

Điều kiện: \(x > 0\)

Ta có: \(\sqrt x  = \sqrt {{4^{{{\log }_4}x}}}  = {2^{{{\log }_4}x}}\)

Do đó \({3^{{1 \over 2} + {{\log }_4}x}} + {3^{{{\log }_4}x - {1 \over 2}}} = \sqrt x \)

\(\Leftrightarrow {3^{\frac{1}{2}}}{.3^{{{\log }_4}x}} + {3^{{{\log }_4}x}}{.3^{ - \frac{1}{2}}} = {2^{{{\log }_4}x}}\)

\(\Leftrightarrow \left( {\sqrt 3  + {1 \over {\sqrt 3 }}} \right){3^{{{\log }_4}x}} = {2^{{{\log }_4}x}}\) 

\(\eqalign{
& \Leftrightarrow {4 \over {\sqrt 3 }} = {\left( {{2 \over 3}} \right)^{{{\log }_4}x}} \cr&\Leftrightarrow {\log _4}x = {\log _{{2 \over 3}}}{4 \over {\sqrt 3 }} \cr 
& \Leftrightarrow x = {4^{{{\log }_{{2 \over 3}}}{4 \over {\sqrt 3 }}}} \cr} \)

Vậy \(S = \left\{ {{4^{{{\log }_{{2 \over 3}}}{4 \over {\sqrt 3 }}}}} \right\}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"