Bài 83 trang 130 SGK giải tích 12 nâng cao

2024-09-14 19:39:54

Giải bất phương trình:

\(\eqalign{
& a)\,{\log _{0,1}}\left( {{x^2} + x - 2} \right) > {\log _{0,1}}\left( {x + 3} \right)\,; \cr 
& b)\,{\log _{{1 \over 3}}}\left( {{x^2} - 6x + 5} \right) + 2{\log _3}\left( {2 - x} \right) \ge 0. \cr} \)

LG a

\({\log _{0,1}}\left( {{x^2} + x - 2} \right) > {\log _{0,1}}\left( {x + 3} \right)\)

Phương pháp giải:

Nếu 0 < a < 1 thì:

\({\log _a}f\left( x \right) > {\log _a}g\left( x \right) \)

\(\Leftrightarrow 0 < f\left( x \right) < g\left( x \right)\)

Lời giải chi tiết:

\(\eqalign{
& {\log _{0,1}}\left( {{x^2} + x - 2} \right) > {\log _{0,1}}\left( {x + 3} \right)\cr&\Leftrightarrow 0 < {x^2} + x - 2 < x + 3\,\,\, \cr 
& \Leftrightarrow \left\{ \matrix{
{x^2} + x - 2 > 0 \hfill \cr 
{x^2} - 5 < 0 \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{
x < - 2\,\,\text { hoặc }\,\,x > 1 \hfill \cr 
- \sqrt 5 < x < \sqrt 5 \hfill \cr} \right. \cr} \)

\( \Leftrightarrow \left[ \begin{array}{l}
- \sqrt 5 < x < - 2\\
1 < x < \sqrt 5
\end{array} \right.\)

Vậy tập nghiệm của bất phương trình là: \(S = \left( { - \sqrt 5 ; - 2} \right) \cup \left( {1;\sqrt 5 } \right)\)

Cách trình bày khác:

ĐK: \(\left\{ \begin{array}{l}
{x^2} + x - 2 > 0\\
x + 3 > 0
\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x > 1\\
x < -2
\end{array} \right.\\
x > - 3
\end{array} \right. \)

\( \Leftrightarrow \left[ \begin{array}{l}
x > 1\\
- 3 < x < - 2
\end{array} \right.\)

Khi đó,

\(\begin{array}{l}
{\log _{0,1}}\left( {{x^2} + x - 2} \right) > {\log _{0,1}}\left( {x + 3} \right)\\
\Leftrightarrow {x^2} + x - 2 < x + 3\\
\Leftrightarrow {x^2} - 5 < 0\\
\Leftrightarrow - \sqrt 5 < x < \sqrt 5
\end{array}\)

Kết hợp với (*) ta được 

\(\left[ \begin{array}{l}
1 < x < \sqrt 5 \\
- \sqrt 5 < x < - 2
\end{array} \right.\)


LG b

\({\log _{{1 \over 3}}}\left( {{x^2} - 6x + 5} \right) + 2{\log _3}\left( {2 - x} \right) \ge 0\)

Lời giải chi tiết:

ĐK: \(\left\{ \begin{array}{l}
2 - x > 0\\
{x^2} - 6x + 5 > 0
\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}
x < 2\\
\left[ \begin{array}{l}
x > 5\\
x < 1
\end{array} \right.
\end{array} \right. \) \(\Leftrightarrow x < 1\)

Khi đó,

\(\eqalign{
& {\log _{{1 \over 3}}}\left( {{x^2} - 6x + 5} \right) + 2{\log _3}\left( {2 - x} \right) \ge 0 \cr&\Leftrightarrow {\log _{{1 \over 3}}}\left( {{x^2} - 6x + 5} \right) \ge - {\log _3}{\left( {2 - x} \right)^2} \cr 
& \Leftrightarrow {\log _{{1 \over 3}}}\left( {{x^2} - 6x + 5} \right) \ge {\log _{{1 \over 3}}}{\left( {2 - x} \right)^2} \cr 
& \Leftrightarrow {x^2} - 6x + 5 \le {\left( {2 - x} \right)^2} \cr& \Leftrightarrow {x^2} - 6x + 5 \le {x^2} - 4x + 4\cr&\Leftrightarrow 2x - 1 \ge 0 \cr} \)

\( \Leftrightarrow x \ge \frac{1}{2}\)

Kết hợp ĐK ta được \({1 \over 2} \le x < 1\)             

Vậy tập nghiệm của bất phương trình là: \(S = \left[ {{1 \over 2};1} \right)\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"