Bài 96 trang 132 SGK giải tích 12 nâng cao

2024-09-14 19:39:55

Giải các hệ phương trình:

LG a

\(\left\{ \matrix{
{\log _2}\left( {x - y} \right) = 5 - {\log _2}\left( {x + y} \right) \hfill \cr 
{{\log x - \log 4} \over {\log y - \log 3}} = - 1 \hfill \cr} \right.\)

Lời giải chi tiết:

Điều kiện: 

\(\left\{ \matrix{
x > 0;\,y > 0 \hfill \cr 
x - y > 0;\,x + y > 0 \hfill \cr} \right. \Leftrightarrow x > y > 0\)

Khi đó,

\(\left\{ \matrix{
{\log _2}\left( {x - y} \right) = 5 - {\log _2}\left( {x + y} \right) \hfill \cr 
{{\log x - \log 4} \over {\log y - \log 3}} = - 1 \hfill \cr} \right.\)

\(\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
{\log _2}\left( {x - y} \right) + {\log _2}\left( {x + y} \right) = 5\\
\log x - \log 4 = - \log y + \log 3
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{\log _2}\left[ {\left( {x - y} \right)\left( {x + y} \right)} \right] = 5\\
\log x + \log y = \log 3 + \log 4
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{\log _2}\left( {{x^2} - {y^2}} \right) = 5\\
\log \left( {xy} \right) = \log 12
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{x^2} - {y^2} = {2^5} = 32\\
xy = 12
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{{12}}{x}\\
{x^2} - \frac{{144}}{{{x^2}}} = 32
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{{12}}{x}\\
{x^4} - 32x - 144 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{{12}}{x}\\
\left[ \begin{array}{l}
{x^2} = 36\\
{x^2} = - 4\left( {loai} \right)
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{{12}}{x}\\
\left[ \begin{array}{l}
x = 6\left( {TM} \right)\\
x = - 6\left( {loai} \right)
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 6\\
y = 2
\end{array} \right.\left( {TM} \right)
\end{array}\)

Vậy \(S = \left\{ {\left( {6;2} \right)} \right\}\)


LG b

\(\left\{ \matrix{
2{\log _2}x - {3^y} = 15 \hfill \cr 
{3^y}.{\log _2}x = 2{\log _2}x + {3^{y + 1}} \hfill \cr} \right.\)

Lời giải chi tiết:

Điều kiện: \(x > 0\).

Đặt \(\left\{ \begin{array}{l}
u = {\log _2}x\\
v = {3^y}>0
\end{array} \right.\) ta có hệ phương trình:

\(\left\{ \matrix{
2u - v = 15\,\,\,\,\left( 1 \right) \hfill \cr 
u.v = 2u + 3v\,\,\,\,\left( 2 \right) \hfill \cr} \right.\)

Từ (1) suy ra \(v = 2u – 15\), thay vào (2) ta được:

\(\eqalign{
& u\left( {2u - 15} \right) = 2u + 3\left( {2u - 15} \right) \cr&\Leftrightarrow 2{u^2} - 23u + 45 = 0 \cr 
& \Leftrightarrow \left\{ \matrix{
u = 9 \hfill \cr 
u = {5 \over 2} \hfill \cr} \right. \cr} \)

Với \(u = 9 \Rightarrow v = 2.9 - 15 = 3\left( {TM} \right)\)

Với \(u = \frac{5}{2} \Rightarrow v = 2.\frac{5}{2} - 15 =  - 10\left( {loai} \right)\)

Vậy 

\(\left\{ \matrix{
u = 9 \hfill \cr 
v = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
\log _2x = 9 \hfill \cr 
{3^y} = 3 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
x = {2^9} = 512 \hfill \cr 
y = 1 \hfill \cr} \right.\)

Vậy \(S = \left\{ {\left( {512;1} \right)} \right\}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"