Bài 93 trang 131 SGK giải tích 12 nâng cao

2024-09-14 19:39:56

Giải phương trình:

LG a

\(\eqalign{
{32^{{{x + 5} \over {x - 7}}}} = 0,{25.128^{{{x + 17} \over {x - 3}}}}\,; \cr} \)

Lời giải chi tiết:

Ta có: \({32^{{{x + 5} \over {x - 7}}}} = 0,{25.128^{{{x + 17} \over {x - 3}}}} \)

\( \Leftrightarrow {\left( {{2^5}} \right)^{\frac{{x + 5}}{{x - 7}}}} = \frac{1}{4}.{\left( {{2^7}} \right)^{\frac{{x + 17}}{{x - 3}}}}\)

\(\Leftrightarrow {2^{{{5\left( {x + 5} \right)} \over {x - 7}}}} = {2^{-2}}{.2^{{{7\left( {x + 17} \right)} \over {x - 3}}}}\)

\( \Leftrightarrow {2^{{{5\left( {x + 5} \right)} \over {x - 7}}}} = {2^{{{7\left( {x + 17} \right)} \over {x - 3}}-2}}\)

\(\Leftrightarrow {{5\left( {x + 5} \right)} \over {x - 7}} = {{7\left( {x + 17} \right)} \over {x - 3}} - 2\,\,\left( 1 \right)\)

Điều kiện: \(x \ne 3;\,x \ne 7.\)

\( (1)\Rightarrow 5\left( {x + 5} \right)\left( {x - 3} \right)\) \( = 7\left( {x + 17} \right)\left( {x - 7} \right)\) \( - 2\left( {x - 7} \right)\left( {x - 3} \right)\)

\( \Leftrightarrow 5\left( {{x^2} + 2x - 15} \right)\) \( = 7\left( {{x^2} + 10x - 119} \right) \) \(- 2\left( {{x^2} - 10x + 21} \right)\)

\( \Leftrightarrow 5{x^2} + 10x - 75 \) \(= 7{x^2} + 70x - 833 - 2{x^2} + 20x - 42\)

\( \Leftrightarrow 80x = 800\)

\(\Leftrightarrow x = 10\) (nhận)

Vậy \(S = \left\{ {10} \right\}\)


LG b

\(\eqalign{
{5^{x - 1}} = {10^x}{.2^{ - x}}{.5^{x + 1}}\,; \cr} \)

Lời giải chi tiết:

\({5^{x - 1}} = {10^x}{.2^{ - x}}{.5^{x + 1}}\)

\(\Leftrightarrow {1 \over 5}{.5^x} = {{{{10}^x}} \over {{2^x}}}{.5.5^x} \)

\(\Leftrightarrow {1 \over 5} = {5^x}.5 \)

\(\Leftrightarrow {5^x} = {1 \over {25}} \)

\(\Leftrightarrow x =  - 2\)

Vậy \(S = \left\{ { - 2} \right\}\)


LG c

\(\eqalign{
{4^x} - {3^{x - 0,5}} = {3^{x + 0,5}} - {2^{2x - 1}}\,; \cr} \)

Lời giải chi tiết:

\(\eqalign{
&{4^x} - {3^{x - 0,5}} = {3^{x + 0,5}} - {2^{2x - 1}}\cr& \Leftrightarrow {4^x} + {2^{2x - 1}} = {3^{x - 0,5}} + {3^{x + 0,5}}\cr& \Leftrightarrow {4^x} + {1 \over 2}{.4^x} = {3^{x - 0,5}} + 3.{3^{x - 0,5}} \cr 
& \Leftrightarrow {3 \over 2}{.4^x} = {3^{x - 0,5}}\left( {1 + 3} \right) \cr} \)

\(\begin{array}{l}
\Leftrightarrow \frac{3}{2}{.4^x} = {3^{x - 0,5}}.4\\
\Leftrightarrow {3.4^x} = {8.3^{x - 0,5}}\\
\Leftrightarrow {3.4^x} = 8.\frac{{{3^x}}}{{\sqrt 3 }}\\
\Leftrightarrow \frac{{{4^x}}}{{{3^x}}} = \frac{8}{{3\sqrt 3 }}\\
\Leftrightarrow {\left( {\frac{4}{3}} \right)^x} = {\left( {\frac{2}{{\sqrt 3 }}} \right)^3}\\
\Leftrightarrow {\left( {\frac{2}{{\sqrt 3 }}} \right)^{2x}} = {\left( {\frac{2}{{\sqrt 3 }}} \right)^3}\\
\Leftrightarrow 2x = 3 \Leftrightarrow x = \frac{3}{2}
\end{array}\)

Vậy \(S = \left\{ {\frac{3}{2} } \right\}\)


LG d

\(\eqalign{
{3^{4x + 8}} - {4.3^{2x + 5}} + 28 = 2{\log _2}\sqrt 2 . \cr} \)

Lời giải chi tiết:

\(\begin{array}{l}
\Leftrightarrow {3^{2\left( {2x + 4} \right)}} - {4.3.3^{2x + 4}} + 28 = {\log _2}{\left( {\sqrt 2 } \right)^2}\\
\Leftrightarrow {\left( {{3^{2x + 4}}} \right)^2} - {12.3^{2x + 4}} + 28 = 1\\
\Leftrightarrow {\left( {{3^{2x + 4}}} \right)^2} - {12.3^{2x + 4}} + 27 = 0
\end{array}\)

Đặt \(t = {3^{2x + 4}}\,\left( {t > 0} \right)\)

Ta có phương trình: \({t^2} - 12t + 27 = 0\)

\(\eqalign{
& \Leftrightarrow \left[ \matrix{
t = 9 \hfill \cr 
t = 3 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{3^{2x + 4}} = 9 \hfill \cr 
{3^{2x + 4}} = 3 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
2x + 4 = 2 \hfill \cr 
2x + 2 = 1 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = - 1 \hfill \cr 
x = - {3 \over 2} \hfill \cr} \right. \cr} \)

Vậy \(S = \left\{ { - {3 \over 2}; - 1} \right\}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"