Bài 89 trang 131 SGK giải tích 12 nâng cao

2024-09-14 19:39:57

Đề bài

Chứng minh rằng hàm số \(y = \ln {1 \over {1 + x}}\) thỏa mãn hệ thức \(xy' + 1 = {e^y}\)

Lời giải chi tiết

Điều kiện: \(x > -1\).

Ta có \(y = \ln 1 - \ln \left( {1 + x} \right)=  - \ln \left( {1 + x} \right) \)

\(\Rightarrow y' =  - \dfrac{{\left( {1 + x} \right)'}}{{1 + x}}=  - {1 \over {1 + x}}\)

Khi đó: \(xy' + 1 = {{ - x} \over {1 + x}} + 1  = \frac{{ - x + 1 + x}}{{1 + x}}= {1 \over {1 + x}}\)

Lại có \({e^y} = {e^{\ln \left( {\frac{1}{{1 + x}}} \right)}} = \frac{1}{{1 + x}}\)

Vậy \(xy' + 1 = {e^y}\)

Chú ý:

Các em có thể tính đạo hàm cách khác nhưng dài hơn như sau:

\(\begin{array}{l}
y = \ln \frac{1}{{1 + x}}\\
y' = \frac{{\left( {\frac{1}{{1 + x}}} \right)'}}{{\frac{1}{{1 + x}}}} = \left( {\frac{1}{{1 + x}}} \right)':\frac{1}{{1 + x}}\\
= - \frac{{\left( {1 + x} \right)'}}{{{{\left( {1 + x} \right)}^2}}}.\left( {1 + x} \right)\\
= - \frac{1}{{{{\left( {1 + x} \right)}^2}}}.\left( {1 + x} \right)\\
= - \frac{1}{{1 + x}}
\end{array}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"