Bài 15 Trang 153 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:40:03

Đề bài

Một vật đang chuyển động với vận tốc  10 m/s thì tăng tốc với gia tốc \(a = 3t + {t^2}\,\left( {m/{s^2}} \right)\). Tính quãng đường vật đi được trong khoảng thời gian 10 giây kể từ lúc bắt đầu tăng tốc.

Phương pháp giải - Xem chi tiết

Sử dụng lí thuyết: \(S'\left( t \right) = v\left( t \right),v'\left( t \right) = a\left( t \right)\) hay \(v\left( t \right) = \int {a\left( t \right)dt} ,S\left( t \right) = \int {v\left( t \right)dt} \).

Lời giải chi tiết

Gọi v(t) là vận tốc của vật. ta có : \(v'\left( t \right) = a\left( t \right) = 3t + {t^2}\)

\(v\left( t \right) = \int {a\left( t \right)dt}  = \int {\left( {3t + {t^2}} \right)dt} \) \( = 3.\dfrac{{{t^2}}}{2} + \dfrac{{{t^3}}}{3} + C = \dfrac{{{t^3}}}{3} + \dfrac{{3{t^2}}}{2} + C\)

\(v\left( 0 \right) = 10\) \( \Leftrightarrow \dfrac{{{0^3}}}{3} + \dfrac{{{{3.0}^2}}}{2} + C = 10 \Leftrightarrow C = 10\)

\( \Rightarrow v\left( t \right) = \dfrac{{{t^3}}}{3} + \dfrac{{3{t^2}}}{2} + 10\)

Quãng đường vật đi được là:

\( S= \int\limits_0^{10} {v\left( t \right)dt} \) \( = \int\limits_0^{10} {\left( {\dfrac{{{t^3}}}{3} + \dfrac{{3{t^2}}}{2} + 10} \right)dt} \) \( = \left. {\left( {\dfrac{{{t^4}}}{{12}} + \dfrac{{{t^3}}}{2} + 10t} \right)} \right|_0^{10}\)

\( = \left( {\dfrac{{{{10}^4}}}{{12}} + \dfrac{{{{10}^3}}}{2} + 10.10} \right)\)\( - \left( {\dfrac{{{0^4}}}{{12}} + \dfrac{{{0^3}}}{2} + 10.0} \right)\)  \( = \dfrac{{4300}}{3}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"