Bài 13 Trang 153 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:40:04

LG a

Chứng minh rằng nếu \(f\left( x \right) \ge 0\) trên \(\left[ {a;b} \right]\) thì \(\int\limits_a^b {f\left( x \right)dx \ge 0.} \)

Phương pháp giải:

Sử dụng công thức tích phân Leibnitz \(\int\limits_a^b {f\left( x \right)dx}  = F\left( b \right) - F\left( a \right)\)

Lời giải chi tiết:

Nếu \(f\left( x \right) = 0\) thì \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_a^b {0dx}  = \left. C \right|_a^b = 0\)

Nếu \(f\left( x \right) > 0\), gọi F(x) là một nguyên hàm của f(x) trên đoạn [a; b].

Ta có: F’(x) = f(x) > 0 trên đoạn [a; b] nên F(x) đồng trên đoạn [a; b]

Mà a < b \( \Rightarrow \) F(a) < F (b).

\( \Rightarrow \int\limits_a^b {f\left( x \right)dx}  = F\left( b \right) - F\left( a \right) > 0\).

Vậy \(\int\limits_a^b {f\left( x \right)dx}  \ge 0\).


LG b

Chứng minh rằng nếu \(f\left( x \right) \ge g\left( x \right)\) trên \(\left[ {a;b} \right]\) thì \(\int\limits_a^b {f\left( x \right)dx}  \ge \int\limits_a^b {g\left( x \right)dx} .\) 

Lời giải chi tiết:

Trên đoạn [a, b] ta có; f(x) > g(x) nên f(x ) – g(x) \( \ge \) 0.

Theo câu a, ta có: f(x ) – g(x) \( \ge \)  0, nên

\(\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx}  \ge 0\) \( \Leftrightarrow \int\limits_a^b {f\left( x \right)dx}  - \int\limits_a^b {g\left( x \right)dx}  \ge 0\) \( \Leftrightarrow \int\limits_a^b {f\left( x \right)dx}  \ge \int\limits_a^b {g\left( x \right)dx} \).

Vậy \(\int\limits_a^b {f\left( x \right)dx}  \ge \int\limits_a^b {g\left( x \right)dx} \).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"