Bài 22 Trang 162 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:40:09

Chứng minh rằng: 

LG a

\(\int\limits_0^1 {f\left( x \right)} dx = \int\limits_0^1 {f\left( {1 - x} \right)dx.} \)

Phương pháp giải:

Đổi biến u=1-x

Lời giải chi tiết:

Đặt \(u = 1 - x \Rightarrow du =  - dx\)

\(\int\limits_0^1 {f\left( x \right)} dx = \int\limits_1^0 {f\left( {1 - u} \right)} \left( { - du} \right) \) \(= \int\limits_0^1 {f\left( {1 - u} \right)} du = \int\limits_0^1 {f\left( {1 - x} \right)} dx\)

(Do \(\int\limits_a^b {f\left( u \right)du}  = \int\limits_a^b {f\left( v \right)dv} \))


LG b

 \(\int\limits_{ - 1}^1 {f\left( x \right)} dx = \int\limits_0^1 {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]} dx.\) 

Lời giải chi tiết:

\(\int\limits_{ - 1}^1 {f\left( x \right)} dx = \int\limits_{-1}^0 {f\left( x \right)} dx + \int\limits_0^1 {f\left( x \right)} dx\) với \(\int\limits_{ - 1}^0 {f\left( x \right)} dx\)

Đặt \(u =  - x \Rightarrow du =  - dx\).

Đổi cận \(x =  - 1 \Rightarrow u = 1,x = 0 \Rightarrow u = 0\)

Khi đó \(\int\limits_{ - 1}^0 {f\left( x \right)dx = \int\limits_1^0 {f\left( { - u} \right)} } \left( { - du} \right) \) \(= \int\limits_0^1 {f\left( { - u} \right)} du = \int\limits_0^1 {f\left( { - x} \right)} dx\)

Do đó \(\int\limits_{ - 1}^1 {f\left( x \right)dx}  = \int\limits_0^1 {f\left( { - x} \right)dx}  + \int\limits_0^1 {f\left( x \right)dx}  \) \(= \int\limits_0^1 {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} \)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"