Bài 17 Trang 161 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:40:13

Dùng phương pháp đổi biến số tính các tích phân sau:

LG a

\(\int\limits_0^1 {\sqrt {x + 1} dx;} \) 

Lời giải chi tiết:

Đặt \(u = \sqrt {x + 1}  \Rightarrow {u^2} = x + 1 \) \( \Rightarrow 2udu = dx.\)   

Đổi cận 

  

\(\int\limits_0^1 {\sqrt {x + 1} } dx = \int\limits_1^{\sqrt 2 } {u.2udu}\) \( = 2\int\limits_1^{\sqrt 2 } {{u^2}du} \) \( = \left. {2.{{{u^3}} \over 3}} \right|_1^{\sqrt 2 } = {2 \over 3}\left( {2\sqrt 2  - 1} \right)\)


LG b

\(\int\limits_0^{{\pi  \over 4}} {{{\tan x} \over {{{\cos }^2}x}}} dx;\)

Lời giải chi tiết:

 Đặt \(u = \tan x \Rightarrow du = {{dx} \over {{{\cos }^2}x}}\)

\(\int\limits_0^{{\pi  \over 4}} {{{\tan x} \over {{{\cos }^2}x}}} dx = \int\limits_0^1 {udu = } \left. {{{{u^2}} \over 2}} \right|_0^1 = {1 \over 2}\)


LG c

\(\int\limits_0^1 {{t^3}} {\left( {1 + {t^4}} \right)^3}dt;\)

Lời giải chi tiết:

Đặt \(\displaystyle u = 1 + {t^4} \Rightarrow du = 4{t^3}dt \) \(\displaystyle \Rightarrow {t^3}dt = {{du} \over 4}\)

\(\displaystyle \int\limits_0^1 {{t^3}\left( {1 + {t^4}} \right)} dt \) \(\displaystyle = {1 \over 4}\int\limits_1^2 {{u^3}} du = \left. {{1 \over 4}{{{u^4}} \over 4}} \right|_1^2 \) \(\displaystyle = {1 \over {16}}\left( {16 - 1} \right) = {{15} \over {16}}\)


LG d

\(\int\limits_0^1 {{{5x} \over {{{\left( {{x^2} + 4} \right)}^2}}}} dx;\)

Lời giải chi tiết:

 Đặt \(\displaystyle u = {x^2} + 4 \Rightarrow du = 2xdx \) \(\displaystyle \Rightarrow xdx = {1 \over 2}du\)

\(\displaystyle \int\limits_0^1 {{{5x} \over {{{\left( {{x^2} + 4} \right)}^2}}}} dx = {5 \over 2}\int\limits_4^5 {{{du} \over {{u^2}}}} \) \(\displaystyle = \left. {{5 \over 2}\left( { - {1 \over u}} \right)} \right|_4^5 \) \( = \dfrac{5}{2}\left( { - \dfrac{1}{5} + \dfrac{1}{4}} \right)\) \(\displaystyle  = {1 \over 8}\)


LG e

\(\int\limits_0^{\sqrt 3 } {{{4x} \over {\sqrt {{x^2} + 1} }}} dx;\)

Lời giải chi tiết:

Đặt \(u = \sqrt {{x^2} + 1}  \Rightarrow {u^2} = {x^2} + 1 \) \(\Rightarrow udu = xdx\)

\(\int\limits_0^{\sqrt 3 } {{{4x} \over {\sqrt {{x^2} + 1} }}} dx = 4\int\limits_1^2 {{{udu} \over u}}  = \left. {4u} \right|_1^2 = 4\)


LG f

\(\int\limits_0^{{\pi  \over 6}} {\left( {1 - \cos 3x} \right)} \sin 3xdx.\) 

Lời giải chi tiết:

Đặt \(\displaystyle u = 1 - \cos 3x \Rightarrow du = 3\sin 3xdx \) \(\displaystyle \Rightarrow \sin 3xdx = {1 \over 3}du\)

\(\displaystyle \int\limits_0^{{\pi  \over 6}} {\left( {1 - \cos 3x} \right)} \sin 3xdx \) \(\displaystyle = {1 \over 3}\int\limits_0^1 {udu = \left. {{{{u^2}} \over 6}} \right|} _0^1 = {1 \over 6}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"