Bài 28 Trang 167 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:40:14

Tính diện tích hình phẳng giới hạn bởi:

LG a

Đồ thị các hàm số \(y = {x^2} - 4\), \(y =  - {x^2} - 2x\) và đường thẳng \(x =  - 3,x =  - 2;\)

Phương pháp giải:

Tính diện tích hình phẳng giới hạn bởi các đồ thị hàm số \(y = f\left( x \right),y = g\left( x \right),\) \(x = a,x = b\).

+) B1: Tìm nghiệm \(a \le {x_1} < {x_2} < ... < {x_n} \le b\) của phương trình hoành độ giao điểm \(f\left( x \right) = g\left( x \right)\).

+) B2: Tính diện tích theo công thức:

\(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)

\( = \int\limits_a^{{x_1}} {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \) \( + \int\limits_{{x_1}}^{{x_2}} {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \) \( + ... + \int\limits_{{x_{n - 1}}}^{{x_n}} {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \) \( + \int\limits_{{x_n}}^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)

\( = \left| {\int\limits_a^{{x_1}} {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} } \right|\)\( + \left| {\int\limits_{{x_1}}^{{x_2}} {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} } \right|\) \( + ... + \left| {\int\limits_{{x_{n - 1}}}^{{x_n}} {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} } \right|\) \( + \left| {\int\limits_{{x_n}}^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} } \right|\)

Lời giải chi tiết:

Cách 1: Tính diện tích theo công thức

Ta có: \({x^2} - 4 =  - {x^2} - 2x\) \( \Leftrightarrow 2{x^2} + 2x - 4 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 2\end{array} \right.\)

Có \( - 3 <  - 2 < 1\) nên \(S = \int\limits_{ - 3}^{ - 2} {\left| {{x^2} - 4 - \left( { - {x^2} - 2x} \right)} \right|dx} \) \( = \int\limits_{ - 3}^{ - 2} {\left| {2{x^2} + 2x - 4} \right|dx} \) \( = \left| {\int\limits_{ - 3}^{ - 2} {\left( {2{x^2} + 2x - 4} \right)dx} } \right|\)

\( = \left| {\left( {2.\frac{{{x^3}}}{3} + 2.\frac{{{x^2}}}{2} - 4x} \right)_{ - 3}^{ - 2}} \right|\) \( = \left| {\frac{{20}}{3} - 3} \right| = \frac{{11}}{3}\)

Cách 2: Xét dấu

Ta có

 

Ta thấy, khi \( - 3 \le x \le  - 2\) thì \(2{x^2} + 2x - 4 \ge 0\)

\( \Rightarrow \left| {2{x^2} + 2x - 4} \right| = 2{x^2} + 2x - 4\).

Do đó,

\(S = \int\limits_{ - 3}^{ - 2} {\left| {{x^2} - 4 - \left( { - {x^2} - 2x} \right)} \right|} dx \) \(= \int\limits_{ - 3}^{ - 2} {\left( {2{x^2} + 2x - 4} \right)} dx\)

\( = 2\int\limits_{ - 3}^{ - 2} {\left( {{x^2} + x - 2} \right)} dx\)

\( = 2\left. {\left( {{{{x^3}} \over 3} + {{{x^2}} \over 2} - 2x} \right)} \right|_{ - 3}^{ - 2} = {{11} \over 3}\)

Chú ý:

Khi việc xét dấu phức tạp ta nên làm theo cách 1 sẽ tránh được việc lập bảng xét dấu.


LG b

Đồ thị hai hàm số \(y = {x^2}\) và \(y =  - {x^2} - 2x\)

Lời giải chi tiết:

Cách 1:

Phương trình hoành độ giao điểm của hai đồ thị là:

\({x^2} - 4 = - {x^2} - 2x \Leftrightarrow {x^2} + x - 2 = 0 \) \(\Leftrightarrow \left[ \matrix{
x = - 2 \hfill \cr 
x = 1 \hfill \cr} \right.\)

\(S = \int\limits_{ - 2}^1 {\left| {{x^2} - 4 - \left( { - {x^2} - 2x} \right)} \right|dx} \) \( = \int\limits_{ - 2}^1 {\left| {2{x^2} + 2x - 4} \right|dx} \) \( = \left| {\int\limits_{ - 2}^1 {\left( {2{x^2} + 2x - 4} \right)dx} } \right|\)

\( = \left| {\left( {\dfrac{{2{x^3}}}{3} + \dfrac{{2{x^2}}}{2} - 4x} \right)_{ - 2}^1} \right|\) \( = \left| { - \dfrac{7}{3} - \dfrac{{20}}{3}} \right| = \left| { - 9} \right| = 9\)

Cách 2:

Phương trình hoành độ giao điểm của hai đồ thị là:

\({x^2} - 4 = - {x^2} - 2x \Leftrightarrow {x^2} + x - 2 = 0 \) \(\Leftrightarrow \left[ \matrix{
x = - 2 \hfill \cr 
x = 1 \hfill \cr} \right.\)

Ta thấy, khi \( - 2 \le x \le  1\) thì \(2{x^2} + 2x - 4 \le 0\)

\( \Rightarrow \left| {2{x^2} + 2x - 4} \right| = -2{x^2} - 2x + 4\).

Do đó,

\(S = \int\limits_{ - 2}^1 {\left| {{x^2} - 4 - \left( { - {x^2} - 2x} \right)} \right|} dx \) \(= \int\limits_{ - 2}^1 {\left| {2{x^2} + 2x - 4} \right|} dx\)

\( = \int\limits_{ - 2}^1 {\left( { - 2{x^2} - 2x + 4} \right)} dx \) \(= \left. {\left( { - {{2{x^3}} \over 3} - {x^2} + 4x} \right)} \right|_{ - 2}^1 = 9\)


LG c

Đồ thị hàm số \(y = {x^3} - 4x\), trục hoành, đường thẳng x=-2 và đường thẳng x=4

Lời giải chi tiết:

Cách 1:

Ta có: \({x^3} - 4x = 0 \Leftrightarrow x\left( {{x^2} - 4} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\\x =  - 2\end{array} \right.\)

Ta thấy, \( - 2 < 0 < 2 < 4\)

\( \Rightarrow S = \int\limits_{ - 2}^4 {\left| {{x^3} - 4x} \right|dx} \) \( = \int\limits_{ - 2}^0 {\left| {{x^3} - 4x} \right|dx}  + \int\limits_0^2 {\left| {{x^3} - 4x} \right|dx} \) \(+ \int\limits_2^4 {\left| {{x^3} - 4x} \right|dx}\) \( = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right|\) \(+ \left| {\int\limits_2^4 {\left( {{x^3} - 4x} \right)dx} } \right|\)

\( = \left| {\left( {\dfrac{{{x^4}}}{4} - \dfrac{{4{x^2}}}{2}} \right)_{ - 2}^0} \right| + \left| {\left( {\dfrac{{{x^4}}}{4} - \dfrac{{4{x^2}}}{2}} \right)_0^2} \right|\) \(+ \left| {\left( {\dfrac{{{x^4}}}{4} - \dfrac{{4{x^2}}}{2}} \right)_2^4} \right|\) \( = \left| {0 - \left( { - 4} \right)} \right| + \left| { - 4 - 0} \right|+ \left| { 32 - (-4)} \right|\) \( = 44\)

Cách 2:

\(S = \int\limits_{ - 2}^4 {\left| {{x^3} - 4x} \right|} dx \) \(= \int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)} dx - \int\limits_0^2 {\left( {{x^3} - 4x} \right)} dx \) \(+ \int\limits_2^4 {\left( {{x^3} - 4x} \right)} dx \) 

\( = \left( {\dfrac{{{x^4}}}{4} - \dfrac{{4{x^2}}}{2}} \right)_{ - 2}^0 - \left( {\dfrac{{{x^4}}}{4} - \dfrac{{4{x^2}}}{2}} \right)_0^2\) \( + \left( {\dfrac{{{x^4}}}{4} - \dfrac{{4{x^2}}}{2}} \right)_2^4\)

\( = 4 - \left( { - 4} \right) + 36\)

\(= 44\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"