Bài 36 Trang 175 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:40:16

Đề bài

Tính thể tích của vật thể \(T\) nằm giữa hai mặt phẳng \(x = 0\) và \(x = \pi \), biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\) \((0 \le x \le \pi )\) là một hình vuông cạnh là \(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} \).

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(V = \int\limits_a^b {S\left( x \right)dx} \)

Lời giải chi tiết

Diện tích thiết diện hình vuông:

\(\eqalign{
& S(x) = {(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} )^2} = 4\sin x \cr 
& V = \int\limits_0^\pi {S(x)dx} = \int\limits_0^\pi {4\sin xdx }\cr &= - 4\cos x\mathop |\nolimits_0^\pi = 8 \cr} \)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"