Bài 52 Trang 177 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:40:23

Tính diện tích của các hình phẳng giới hạn bởi:

LG a

Parabol \(y = {x^2} - 2x + 2,\) tiếp tuyến của nó tại điểm \(M(3;5)\) và trục tung

Phương pháp giải:

- Viết phương trình tiếp tuyến.

- Dựng hình suy ra công thức tính diện tích.

Lời giải chi tiết:

 

Ta có \(y' = 2x - 2 \Rightarrow y'\left( 3 \right) = 4.\)
Phương trình tiếp tuyến với parabol tại M(3;5) là:
\(y - 5 = 4\left( {x - 3} \right) \Leftrightarrow y = 4x - 7\)
Gọi S là diện tích cần tìm, ta có :

\(\eqalign{
& S = \int\limits_0^3 {\left( {{x^2} - 2x + 2 - 4x + 7} \right)} dx \cr 
& \,\,\, = \int\limits_0^3 {\left( {{x^2} - 6x + 9} \right)} dx = \int\limits_0^3 {{{\left( {x - 3} \right)}^2}dx} \cr 
& \,\,\, = \left. {{1 \over 3}{{\left( {x - 3} \right)}^3}} \right|_0^3 = 9. \cr} \)


LG b

Parabol \(y =  - {x^2} + 4x - 3\) và các tiếp tuyến của nó tại các điểm \(A(0;-3)\) và \(B(3;0)\)

Phương pháp giải:

- Viết phương trình tiếp tuyến.

- Dựng hình suy ra công thức tính diện tích.

Lời giải chi tiết:

Ta có \(y' =  - 2x + 4 \) \(\Rightarrow y'\left( 0 \right) = 4;y'\left( 3 \right) =  - 2\)
Phương trình tiếp tuyến tại \(A(0;-3)\) là :
\(y + 3 = 4\left( {x - 0} \right) \Leftrightarrow y = 4x - 3\)
Phương trình tiếp tuyến tại \(B(3;0)\) là :
\(y =  - 2\left( {x - 3} \right) \Leftrightarrow y =  - 2x + 6\)
Giao điểm của hai tiếp tuyến là \(C\left( {{3 \over 2};3} \right).\) 

Kí hiệu \({A_1}\) và \({A_2}\) là tam giác cong \(ACD\) Và \(BCD\). Ta có :

\(S\left( {{A_1}} \right) = \int\limits_0^{{3 \over 2}} {\left( {4x - 3 + {x^2} - 4x + 3} \right)} dx \) \(= \int\limits_0^{{3 \over 2}} {{x^2}dx = \left. {{{{x^3}} \over 3}} \right|_0^{{3 \over 2}}}  = {9 \over 8}\)

\(S\left( {{A_2}} \right) = \int\limits_{{3 \over 2}}^3 {\left( { - 2x + 6 + {x^2} - 4x + 3} \right)} dx \) \(= \int\limits_{{3 \over 2}}^3 {{{\left( {x - 3} \right)}^2}dx = } \left. {{1 \over 3}{{\left( {x - 3} \right)}^3}} \right|_{{3 \over 2}}^3 = {9 \over 8}\)

Vậy \(S = S\left( {{A_1}} \right) + S\left( {{A_2}} \right) = {9 \over 8} + {9 \over 8} = {9 \over 4}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"