Bài 42 Trang 175 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:40:28

LG a

\(y = {1 \over {{x^2}}}\cos \left( {{1 \over x} - 1} \right)\);

Phương pháp giải:

Đổi biến \(u = {1 \over x} - 1\)

Lời giải chi tiết:

Đặt \(u = {1 \over x} - 1 \Rightarrow du =  - {1 \over {{x^2}}}dx \) \(\Rightarrow {{dx} \over {{x^2}}} =  - du\)
Do đó \(\int {{1 \over {{x^2}}}} \cos \left( {{1 \over x} - 1} \right)dx =  - \int {\cos udu}\) \( =  - \sin u + C =  - \sin \left( {{1 \over x} - 1} \right)  + C\)

Cách 2: Đưa vào vi phân


LG b

\(y = {x^3}{\left( {1 + {x^4}} \right)^3}\);

Phương pháp giải:

Đổi biến \(u=1+x^4\)

Lời giải chi tiết:

Đặt \(u = 1 + {x^4} \Rightarrow du = 4{x^3}dx \) \(\Rightarrow {x^3}dx = {{du} \over 4}\)

\(\int {{x^3}{{\left( {1 + {x^4}} \right)}^3}dx}= {1 \over 4}\int {{u^3}du} \) \(= {{{u^4}} \over {16}} + C \) \(= {1 \over {16}} {\left( {1 + {x^4}} \right)^4} + C\)

Cách 2: Đưa vào vi phân


LG c

\(y = {{x{e^{2x}}} \over 3}\); 

Phương pháp giải:

Sử dụng phương pháp từng phần tính nguyên hàm: 

Đặt \(\left\{ \matrix{u = {x \over 3} \hfill \cr dv = {e^{2x}}dx \hfill \cr} \right. \)

Lời giải chi tiết:

Đặt 

\(\left\{ \matrix{
u = {x \over 3} \hfill \cr 
dv = {e^{2x}}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = {1 \over 3}dx \hfill \cr 
v = {1 \over 2}{e^{2x}} \hfill \cr} \right.\)

Suy ra: \(\int {{{x{e^{2x}}} \over 3}}dx \) \(= {1 \over 6}x{e^{2x}} - {1 \over 6}\int {{e^{2x}}dx} \) \(= {1 \over 6}x{e^{2x}} - {1 \over {12}}{e^{2x}} + C \)


LG d

\(y = {x^2}{e^x}\).

Phương pháp giải:

Đặt 

\(\left\{ \matrix{
u = {x^2} \hfill \cr 
dv = {e^x}dx \hfill \cr} \right. \)

Lời giải chi tiết:

Đặt 

\(\left\{ \matrix{
u = {x^2} \hfill \cr 
dv = {e^x}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = 2xdx \hfill \cr 
v = {e^x} \hfill \cr} \right.\)

Suy ra \(\int {{x^2}{e^x}dx = {x^2}{e^x} - 2\int {x{e^x}dx} } \)   (1)

Đặt 

\(\left\{ \matrix{
u = x \hfill \cr 
dv = {e^x}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr 
v = {e^x} \hfill \cr} \right.\)

Do đó: \(\int {x{e^x}dx }\) \(= x{e^x} - \int {{e^x}dx}\) \( = x{e^x} - {e^x} + C_1 \)

Từ (1) suy ra \(\int {{x^2}{e^x}dx} = {x^2}{e^x} - 2x{e^x} + 2{e^x} + C \) \(= {e^x}\left( {{x^2} - 2x + 2} \right) + C\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"