Bài 14 trang 191 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:40:32

LG a

Cho số phức \(z=x+yi\). Khi \(z \ne i\), hãy tìm phần thực và phần ảo của số phức \({{z + i} \over {z - i}}\)

Phương pháp giải:

Thực hiện chia hai số phức \(\dfrac{{a + bi}}{{c + di}} = \dfrac{{\left( {a + bi} \right)\left( {c - di} \right)}}{c^2+d^2}\)

Lời giải chi tiết:

Ta có:

\(\displaystyle {{z + i} \over {z - i}} = {{x + \left( {y + 1} \right)i} \over {x + \left( {y - 1} \right)i}} \) \(\displaystyle = {{\left[ {x + \left( {y + 1} \right)i} \right]\left[ {x - \left( {y - 1} \right)i} \right]} \over {{x^2} + {{\left( {y - 1} \right)}^2}}} \) \(\displaystyle  = \frac{{{x^2} + \left( {xy + x} \right)i - \left( {xy - x} \right)i - \left( {{y^2} - 1} \right){i^2}}}{{{x^2} + {{\left( {y - 1} \right)}^2}}}\) \(\displaystyle  = \frac{{{x^2} + 2xi + \left( {{y^2} - 1} \right)}}{{{x^2} + {{\left( {y - 1} \right)}^2}}}\) \(\displaystyle = {{{x^2} + {y^2} - 1} \over {{x^2} + {{\left( {y - 1} \right)}^2}}} + {{2x} \over {{x^2} + {{\left( {y - 1} \right)}^2}}}i\)

Vậy phần thực là \(\displaystyle {{{x^2} + {y^2} - 1} \over {{x^2} + {{\left( {y - 1} \right)}^2}}}\), phần ảo là \(\displaystyle {{2x} \over {{x^2} + {{\left( {y - 1} \right)}^2}}}\).


LG b

Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức \(z\) thỏa mãn điều kiện \({{z + i} \over {z - i}}\) là số thực dương. 

Phương pháp giải:

Số phức z=a+bi là số thực dương nếu b=0 và a>0.

Lời giải chi tiết:

Với \(z \ne i\), 

Theo câu a, \(\dfrac{{z + i}}{{z - i}} \) \( = \dfrac{{{x^2} + {y^2} - 1}}{{{x^2} + {{\left( {y - 1} \right)}^2}}} + \dfrac{{2x}}{{{x^2} + {{\left( {y - 1} \right)}^2}}}i\)

Nên để \(\dfrac{{z + i}}{{z - i}}\) là số thực dương thì \(\left\{ \begin{array}{l}\dfrac{{2x}}{{{x^2} + {{\left( {y - 1} \right)}^2}}} = 0\\\dfrac{{{x^2} + {y^2} - 1}}{{{x^2} + {{\left( {y - 1} \right)}^2}}} > 0\end{array} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}x = 0\\{x^2} + {\left( {y - 1} \right)^2} \ne 0\\{x^2} + {y^2} - 1 > 0\end{array} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}x = 0\\{\left( {y - 1} \right)^2} \ne 0\\{y^2} - 1 > 0\end{array} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y \ne 1\\\left[ \begin{array}{l}y > 1\\y <  - 1\end{array} \right.\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0,y > 1\\x = 0,y <  - 1\end{array} \right.\)

Vậy quỹ tích điểm cần tìm là trục ảo bỏ đi đoạn thẳng IJ, trong đó I(0; 1); J(0; -1).

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"