Bài 11 trang 191 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:40:33

Đề bài

Hỏi mỗi số sau đây là số thực hay số ảo (z là số phức tùy ý cho trước sao cho biểu thức xác định)?

\({z^2} + {\left( {\overline z } \right)^2}\);               \({{z - \overline z } \over {{z^3} + {{\left( {\overline z } \right)}^3}}}\);                     \({{{z^2} - {{\left( {\overline z } \right)}^2}} \over {1 + z\overline z }}\)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất:

+) Số phức z là số thực khi và chỉ khi \(\overline z=z \)

+) "Số phức z là số ảo khi và chỉ khi \( \overline z=-z\)

Lời giải chi tiết

* Ta có:

\(\overline {{z^2} + {{\left( {\overline z } \right)}^2}}  \\= \overline {{z^2}}  + \overline {{{\left( {\overline z } \right)}^2}}  \\= {\left( {\overline z } \right)^2} + {\left( {\overline {\overline z } } \right)^2} \\= {\left( {\overline z } \right)^2} + {z^2}\)

\( \Rightarrow {z^2} + {\left( {\overline z } \right)^2}\)  là số thực.

Cách khác: Gọi \(z=a+bi\)

Ta có: \({z^2} + {\overline z ^2} = {\left( {a + bi} \right)^2} + {\left( {a - bi} \right)^2} \) \( = {a^2} + 2abi - {b^2} + {a^2} - 2abi - {b^2} \) \(= 2{a^2} - 2{b^2}\)

\(= 2\left( {{a^2} - {b^2}} \right)\) là số thực

* \(\overline {\left( {{{z - \overline z } \over {{z^3} + {{\left( {\overline z } \right)}^3}}}} \right)}  \) \( = \frac{{\overline {z - \overline z } }}{{\overline {{z^3} + {{\left( {\overline z } \right)}^3}} }} \) \( = \frac{{\overline z  - \overline {\overline z } }}{{\overline {{z^3}}  + \overline {{{\left( {\overline z } \right)}^3}} }}  \) \(= \frac{{\overline z  - z}}{{{{\left( {\overline z } \right)}^3} + {{\left( {\overline {\overline z } } \right)}^3}}}  \) \(=  - \frac{{z - \overline z }}{{{{\left( {\overline z } \right)}^3} + {z^3}}}\)

\(\Rightarrow {{z - \overline z } \over {{z^3} + {({\overline z })^3}}}\) là số ảo.

*  \(\overline {\left( {{{{z^2} - {{\left( {\overline z } \right)}^2}} \over {1 + z\overline z }}} \right)}   \) \(= {{{({\overline z })^2} - {z^2}} \over {1 + \overline z z}}  \) \(=  - {{{z^2}-{({\overline z })^2}} \over {1 + \overline z .z}}  \)

\(\Rightarrow {{{z^2} - {{\left( {\overline z } \right)}^2}} \over {1 + z\overline z }}\) là số ảo.

Cách khác:

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"