Bài 8 trang 190 SGK Giải tích 12 Nâng cao

2024-09-14 19:40:34

Chứng minh rằng:

LG a

Nếu vec tơ \(\overrightarrow u \) của mặt phẳng phức biểu diễn số phức z thì độ dài của vectơ \(\overrightarrow u \) là \(\left| {\overrightarrow u } \right| = \left| z \right|\), và từ đó nếu các điểm \({A_1},{A_2}\) theo thứ tự biểu diễn các số phức \({z_1},{z_2}\) thì \(\left| {\overrightarrow {{A_1}{A_2}} } \right| = |{z_2} - {z_1}|;\)

Phương pháp giải:

Độ dài véc tơ \(\overrightarrow u  = \left( {a;b} \right)\) là \(\left| {\overrightarrow u } \right| = \sqrt {{a^2} + {b^2}} \)

Mô đun số phức \(z = a + bi\) là \(\left| z \right| = \sqrt {{a^2} + {b^2}} \)

Lời giải chi tiết:

Nếu \(z=a+bi\;(a,b\in\mathbb R)\) thì \(|z| = \sqrt {{a^2} + {b^2}} \)

\(\overrightarrow u \) biểu diễn số phức z thì \(\overrightarrow u  = \left( {a;b} \right)\) và \(|\overrightarrow u | = \sqrt {{a^2} + {b^2}} \)

Do đó \(\left| {\overrightarrow u } \right| = \left| z \right|\).

Gọi A1 là điểm biểu diễn số phức z1=a1+b1 i=>A1 (a1;b1)

A2 là điểm biểu diễn số phức z2=a2+b2 i=>A2 (a2;b2)

\(\begin{array}{l} \Rightarrow \overrightarrow {{A_1}{A_2}}  = \left( {{a_2} - {a_1};{b_2} - {b_1}} \right)\\ \Rightarrow \left| {\overrightarrow {{A_1}{A_2}} } \right| = \sqrt {{{\left( {{a_2} - {a_1}} \right)}^2} + {{\left( {{b_2} - {b_1}} \right)}^2}} \\{z_2} - {z_1} = \left( {{a_2} + {b_2}i} \right) - \left( {{a_1} + {b_1}i} \right)\\ = \left( {{a_2} - {a_1}} \right) + \left( {{b_2} - {b_1}} \right)i\\ \Rightarrow \left| {{z_2} - {z_1}} \right| = \sqrt {{{\left( {{a_2} - {a_1}} \right)}^2} + {{\left( {{b_2} - {b_1}} \right)}^2}} \\ \Rightarrow \left| {\overrightarrow {{A_1}{A_2}} } \right| = \left| {{z_2} - {z_1}} \right|\end{array}\)


LG b

Với mọi số phức z, z', ta có \(\left| {zz'} \right| = \left| z \right|\left| {z'} \right|\) và khi \(z \ne 0\) thì \(\left| {{{z'} \over z}} \right| = {{|z'|} \over {|z|}};\)

Lời giải chi tiết:

\(z=a+bi;\;z'=a'+b'i\) thì \(|z{|^2} = {a^2} + {b^2};|z'{|^2} = a{'^2} + b{'^2}\) và \(z.z' = (aa' - bb') + (ab' + a'b)i\) nên 

\(\eqalign{
& |z.z'{|^2} = {(aa' - bb')^2} + {(ab' + a'b)^2} \cr & = \left( {aa'} \right) + {\left( {bb'} \right)^2} - 2aa'bb' \cr & + {\left( {ab'} \right)^2} + {\left( {a'b} \right)^2} + 2ab'a'b\cr &= {(aa')^2} + {(bb')^2} + {(ab')^2} + {(a'b)^2} \cr 
&|z{|^2}.|z'{|^2} = \left( {{a^2} + {b^2}} \right)\left( {a{'^2} + b{'^2}} \right)\cr 
& = {a^2}a{'^2} + {a^2}b{'^2} + a{'^2}{b^2} + {b^2}b{'^2}\cr & = {(aa')^2} + {(bb')^2} + {(ab')^2} + {(a'b)^2} \cr 
& \Rightarrow |zz'|^2 = |z|^2.|z'|^2\cr &\Rightarrow |zz'| = |z|.|z'| \cr} \)

Khi \(z \ne 0\) ta có:

\(\left| {{{z'} \over z}} \right| \) \(= \left| {{{z'\overline z } \over {|z{|^2}}}} \right| \) \(= {1 \over {|z{|^2}}}|z'.\overline z | \) \(= {1 \over {|z{|^2}}}.\left| {z'} \right|.\left| {\overline z } \right| \) \(= {1 \over {|z{|^2}}}.|z'|.|z| \) \( = {{|z'|} \over {|z|}}\)


LG c

Với mọi số phức z, z', ta có \(|z + z'| \le |z| + |z'|.\)

Phương pháp giải:

Đưa về véc tơ biểu diễn số phức và áp dụng bất đẳng thức véc tơ suy ra đpcm.

Lời giải chi tiết:

Giả sử \(\overrightarrow u \) biểu diễn z và \(\overrightarrow {u'} \) biểu diễn z' thì \(\overrightarrow u+\overrightarrow {u'} \) biểu diễn z+z'. Ta có:

\(\left| {\overrightarrow u  + \overrightarrow {u'} } \right| = \left| {z + z'} \right|;\,\left| {\overrightarrow u } \right| = \left| z \right|;\) \(\left| {\overrightarrow {u'} } \right| = \left| {z'} \right|\)

Mà \(\left| {\overrightarrow u  + \overrightarrow {u'} } \right| \le \left| {\overrightarrow u } \right| + \left| {\overrightarrow {u'} } \right|\) nên \(\left| {z + z'} \right| \le \left| z \right| + \left| {z'} \right|\)

Dấu "=" xảy ra khi \(z=0\) hoặc \(z'=0\).

Cách khác:

Với mọi số phức z, z’, ta có: z + z’ = (a +a’) + (b +b’)i

\(\begin{array}{l} \Rightarrow \left| {z + z'} \right| = \sqrt {{{\left( {a + a'} \right)}^2} + {{\left( {b + b'} \right)}^2}} \\\left| z \right| + \left| {z'} \right| = \sqrt {{a^2} + {b^2}}  + \sqrt {a{'^2} + b{'^2}} \end{array}\)

Theo yêu cầu bài toán ta cần chứng minh:

Theo Bu-nhi-cốp-xki ta có bất đẳng thức (*) đúng với a,b,a',b'R nên |z+z'| ≤ |z|+|z'| (đpcm)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"