Bài 1 trang 189 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:40:38

Cho các số phức \(2 + 3i; 1 + 2i; 2 – i\)

LG a

Biểu diễn các số đó trong mặt phẳng phức.

Phương pháp giải:

Số phức z=a+bi có điểm biểu diễn M(a;b).

Lời giải chi tiết:

Các điểm A, B, C lần lượt biểu diễn các số phức \(1 + 2i;2 + 3i;  2 – i\) 


LG b

 Viết số phức liên hợp của mỗi số đó và biểu diễn chúng trong mặt phẳng phức.

Lời giải chi tiết:

Số phức liên hợp của \(2 + 3i\) là: \(2-3i\)

Số phức liên hợp của \(1 + 2i\) là: \(1-2i\)

Số phức liên hợp của \(2 -i\) là: \(2+i\)

Các điểm M, N, P lần lượt biểu diễn các số phức:  \(2-3i\),  \(1-2i\), \(2+i\)


LG c

Viết số đối của mỗi số phức đó và biểu diễn chúng trong mặt phẳng phức.

Lời giải chi tiết:

Các số đối của \(2 + 3i; 1 + 2i\) và \(2 – i\) lần lượt là: \(-2 – 3i; -1 – 2i\) và \(-2 + i\) được biểu diễn bởi các điểm: P, Q, R.

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"