Bài 19 trang 196 SGK Đại số và Giải tích 12 Nâng cao

2024-09-14 19:40:41

Tìm nghiệm phức của các phương trình bậc hai sau:

LG a

\({z^2} = z + 1\);

Phương pháp giải:

Tính \(\Delta \) và sử dụng công thức nghiệm.

Lời giải chi tiết:

Ta có \({z^2} = z + 1 \) \(\Leftrightarrow {z^2} - z = 1\) \( \Leftrightarrow {z^2} - z + {1 \over 4} = {5 \over 4}\)

\( \Leftrightarrow {\left( {z - {1 \over 2}} \right)^2} = {5 \over 4} \) \(\Leftrightarrow z - {1 \over 2} =  \pm {{\sqrt 5 } \over 2} \) \(\Leftrightarrow z = {1 \over 2} \pm {{\sqrt 5 } \over 2}\)

Cách khác:

\({z^2} = z + 1 \) \(\Leftrightarrow {z^2} - z - 1=0\)

Ta có: \(\Delta  = {1^2} - 4.\left( { - 1} \right) = 5 > 0\) nên phương trình đã cho có hai nghiệm phân biệt \({z_{1,2}} = \frac{{1 \pm \sqrt 5 }}{2}\).


LG b

\({z^2} + 2z + 5 = 0\)

Lời giải chi tiết:

\({z^2} + 2z + 5 = 0 \) \(\Leftrightarrow {\left( {z + 1} \right)^2} =  - 4 = {\left( {2i} \right)^2}\) \( \Leftrightarrow \left[ \matrix{  z + 1 = 2i \hfill \cr  z + 1 =  - 2i \hfill \cr}  \right. \) \(\Leftrightarrow \left[ \matrix{  z =  - 1 + 2i \hfill \cr  z =  - 1 - 2i \hfill \cr}  \right.\)

Vậy \(S = \left\{ { - 1 + 2i; - 1 - 2i} \right\}\)

Cách khác:

Ta có: \(\Delta'  = {1^2} - 1.5 = -4 < 0\) có một căn bậc hai là \(2i\) nên phương trình đã cho có hai nghiệm phức \({z_{1,2}} = -1\pm 2i\).


LG c

\({z^2} + \left( {1 - 3i} \right)z - 2\left( {1 + i} \right) = 0\).

Lời giải chi tiết:

\({z^2} + \left( {1 - 3i} \right)z - 2\left( {1 + i} \right) = 0\) có biệt thức

\(\Delta  = {\left( {1 - 3i} \right)^2} + 8\left( {1 + i} \right) \) \( = 1 - 9 - 6i + 8 + 8i = 2i = {\left( {1 + i} \right)^2}\)

Do đó phương trình có hai nghiệm là: \({z_1} = {1 \over 2}\left[ { - 1 + 3i + \left( {1 + i} \right)} \right] = 2i\)

\({z_2} = {1 \over 2}\left[ { - 1 + 3i - \left( {1 + i} \right)} \right] =  - 1 + i\)

Vậy \(S = \left\{ {2i; - 1 + i} \right\}\)

[hoctot.me - Trợ lý học tập AI]

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"